

26

M Ridwan et al

Deep Learning Approaches for Predicting Intraday Price

Movements: An Evaluation of RNN Variants on High-

Frequency Stock Data

M Ridwan1,2, K Sadik2,*, FM Afendi2

1BPS-Statistics of Bekasi Regency
2Departement Statistics IPB University

*Corresponding author’s e-mail: kusmans@apps.ipb.ac.id

Abstract. This study discusses the comparison of four recurrent neural networks (RNN) models:

Simple RNN, Gated Recurrent Unit (GRU), Long Short-Term Memory (LSTM), and

Bidirectional RNN (BiRNN), in forecasting minute-level stock price time series data. The

performance of these four models is evaluated using the Mean Absolute Percentage Error

(MAPE) on a stock dataset from Bank Central Asia (BBCA.JK). The experimental results reveal

that the GRU model exhibits the best performance with an average MAPE of 0.0255%, followed

by the LSTM model with an average MAPE of 0.0377%. The BiRNN model also demonstrates

good performance with an average MAPE of 0.0668%, while the Simple RNN has the highest

average MAPE at 0.5118%. This suggests that more complex recurrent architectures like GRU

and LSTM have better capabilities in capturing patterns in high-frequency time series data. This

study can be expanded by exploring other models such as CNN, conducting tests on diverse

datasets, and experimenting with a wider range of hyperparameter variations. Additional

variables such as economic indicators, global market data, and social data can also offer a more

comprehensive understanding of factors influencing stock prices.

1. Introduction

1.1. Background

Predicting intraday stock price changes has become increasingly important in the setting of the global

financial market, which is continually changing and growing with complicated dynamics.

Understanding and responding to price fluctuations in extremely short timescales is a critical component

of investment decision-making and risk management. Higher-level data, rather as daily, weekly, or

monthly data, is necessary to overcome these difficulties. Stock data with minute-level granularity is

typically referred to as high-frequency data in the financial sector. High-frequency data is information

that is updated at extremely short intervals, sometimes in seconds, minutes, or hours [1]. High-frequency

data, which includes price information, trading volume, and market depth, has become a vital source for

more in-depth analysis of market dynamics. High-frequency data allows analysts and researchers to

investigate patterns in price changes that occur at very short time periods, allowing them to more

effectively spot trading opportunities and trends.

High-frequency data is critical in delivering real-time insights into dynamic market activity in

intraday trading, when price fluctuations can occur very quickly. Observing price fluctuations in real

27

M Ridwan et al

time helps market participants to respond swiftly to prospective trading opportunities and efficiently

manage risks. As a result, high-frequency data analysis is crucial because it gives a more accurate picture

of price fluctuations in a short period of time, allowing market players to take more precise and timely

decisions.

However, the major problem emerges when high-frequency data must be processed quickly and used

to make rapid and precise investment decisions. We must figure out how to handle this fast changing

and complicated data while reliably identifying patterns and trading possibilities in extremely short

intervals. Classical techniques to time series analysis can have difficulties when dealing with the

complexities of high-frequency data that changes quickly. Classical statistical approaches frequently

rely on linear and independent assumptions, which may not be appropriate for high-frequency data with

strong time dependencies and non-linear patterns. The intricacy of price swings that are difficult to

recognise in intraday trading might also provide a challenge to traditional statistical methodologies.

Deep learning is another common method in time series analysis. Deep learning provides a robust

way for interpreting and modelling time series data, with better data complexity handling capabilities.

Recurrent Neural Networks (RNN) are a type of deep learning architecture that is commonly used in

time series analysis. RNN is a sort of artificial neural network architecture created primarily to solve

problems requiring sequential data, such as time series [2]. They have internal "memory" that helps them

to understand temporal connections in data, recognise sophisticated patterns, and adapt to quick changes.

Furthermore, RNN has grown to include variants such as Bidirectional RNN, LSTM (Long Short-Term

Memory), and GRU (Gated Recurrent Unit), each with increased capabilities in managing strong

temporal dependencies and quick changes in time series data.

The aim of this research is to examine and compare the performance of various RNN variants, such

as Simple RNN, GRU, LSTM, and Bidirectional RNN, in predicting intraday stock price movements at

a minute-level frequency for Bank BCA's stock data. The research also seeks to understand to what

extent each model can handle the complexity and time dependencies in fast-paced trading activities.

This research is limited to the stock price fluctuations of Bank BCA in the year 2022. The purposeful

selection of this data attempts to offer an accurate portrayal of the real and dynamic trade features

throughout that period. Focusing on the year 2022 also aids in developing a better grasp of how deep

learning algorithms might address the issues of forecasting intraday prices in the setting of high-

frequency data.

This research is expected to provide better insights into the effectiveness and potential of deep

learning approaches in addressing the complexity of high-frequency data and supporting improved

decision-making in intraday trading by involving different RNN variants and focusing on high-

frequency data.

1.2. Related Works

Zhao et al. in 2021 used RNN, LSTM, and GRU on daily data of the SSE 180 Index. The research results

indicated that in the most basic comparison, GRU and LSTM significantly outperformed the RNN

model, and the GRU model performed slightly better than the LSTM model [3]. In 2020, Li et al.

compared ARIMA, SVM, and LSTM. ARIMA showed a significant deviation in forecasting high-

frequency financial time series. Combining ARIMA with deep learning, this study successfully

improved prediction accuracy without increasing computational complexity. The enhanced ARIMA

model with deep learning provided an effective model for high-frequency trading strategy design [4].

Taroon et al. in 2020 reviewed deep learning models and compared LSTM and its variants in predicting

minute-level movements of the SPDR S&P 500 index. The results showed that LSTM outperformed

other models [5]. In 2021, Jebli et al. utilized Deep Learning techniques for solar energy prediction,

specifically using Recurrent Neural Network (RNN), Long Short-Term Memory (LSTM), and Gated

Recurrent Units (GRU). RNN and LSTM slightly outperformed GRU due to their ability to maintain

long-term dependencies in time series data [6]. In 2020, Qiu et al. conducted a comparison of LSTM

and GRU on S&P 500, DJIA, and HIS datasets. The experiments on the S&P 500 and DJIA datasets

indicated that the coefficient of determination for the LSTM model was higher than 0.94, and the average

28

M Ridwan et al

squared error of the model was lower than 0.05 [7]. In 2022, Saravanan et al. used deep learning

algorithms for air quality prediction. The proposed model was the Bidirectional Recurrent Neural

Networks (Bi-RNN). The research results showed that Bi-RNN outperformed conventional methods in

predicting air quality and severity [8].

According to research, LSTM and GRU models outperform RNN models in forecasting stock price

fluctuations. All models (RNN, LSTM, and GRU) are capable of preserving long-term dependencies in

time series data, which is critical for comprehending stock price movements impacted by long-term

variables. However, inconsistent results regarding model depth imply that increasing depth does not

necessarily result in higher stock price prediction ability. RNN, LSTM, and GRU models show

tremendous potential for forecasting stock price changes in high-frequency data, as they address patterns

that occur at short time intervals.

Overall, deep learning approaches with RNN, LSTM, GRU, and Bidirectional RNN demonstrate

significant potential in predicting stock prices, especially with high-frequency data. However, the choice

of the appropriate model should be tailored to the data characteristics and specific prediction objectives.

2. Methodology

2.1. High-Frequency Data

Gençay et al. in 2001 stated that high-frequency data means a very large amount of data, where the

number of observations in a single day of the stock market can be equivalent to the number of daily data

in 30 years [9]. Statistically, the higher the number of independently measured observations, the higher

the degree of freedom, which results in better estimator values. High-frequency data paves the way for

studying the financial market on different time scales, from minutes to years, and this can represent an

aggregation factor of four to five times [9]. In 2012, Fabozzi explained that there are two main interests

in high-frequency data. First, high-frequency data allows capturing interesting events or phenomena in

the stock market with a high level of precision. Measuring intraday trading risk and seeking short-term

trading profit opportunities have become of interest to many financial institutions. Second, high-

frequency data can be exploited to enhance forecasting accuracy [10]. By having direct access to more

detailed market transaction information, forecasting models can be built while considering very rapid

price changes. In this context, analysis using high-frequency data can help generate more accurate

predictions of stock price movements and other financial assets.

High-frequency data has become the primary focus of research for those who want to understand the

financial market in more detail. This type of data has advantages in explaining the microstructure of the

market, which involves trading rules that influence stock prices in the capital market [11].

2.2. RNN

RNN (Recurrent Neural Networks) is a type of neural network that can process sequential data of

varying lengths [12]. Naturally, RNNs can be used to solve tasks related to sequential data. Examples

of such tasks include language translation, speech recognition, predicting the next element in a time

series, and more. The equation for RNN can be expressed as follows:

ℎ𝑡 = 𝑓(𝑈𝑥𝑡 +𝑊ℎ𝑡−1) (1)

ℎ𝑡 (hidden state) is the output at the time step t, 𝑥𝑡 is the input at the time step t dan ℎ𝑡−1 is the output

in the previous time step. U and W are weight matrices that convert previous inputs and outputs into

current outputs. The activation function f (usually sigmoid or tanh) is used to combine the previous input

and output into the current output.

The recursion relationship defines how state develops step by step through a sequence through a

feedback loop over the previous state, as illustrated in the diagram in Figure 1 below. The three

parameters in RNN are U (change the input 𝑥𝑡 becomes 𝑠𝑡), W (change the previous state 𝑠𝑡−1 becomes

𝑠𝑡), and V (mapping the newly calculated internal state, 𝑠𝑡 to the output 𝑦𝑡).

29

M Ridwan et al

Figure 1. RNN Flow [12]

2.3. Bidirectional RNN

Bidirectional RNN is a variant of RNN that allows the processing of information from both directions:

from beginning to end (forward) and from end to beginning (backward) in sequence data. Bidirectional

RNNs are often used in tasks that require understanding context from both the beginning and end of

sequences, such as in natural language processing and handwriting recognition. Bidirectional RNNs can

better capture dependencies in sequence data by processing data in two directions.

Figure 2. Bidirectional RNN Flow [12]

In Figure 2 it can be seen that the Bidirectional RNN has two sets of parameters, one to process

sequence data from beginning to end (forward pass) and the other to process sequence data from end to

beginning (backward pass). Here is the equation to calculate the output at each time step t in a

Bidirectional RNN:

Forward Pass:

ℎ𝑡⃗⃗ ⃗ = 𝜎(𝑊ℎ⃗⃗ 𝑥 𝑡 + 𝑈ℎ⃗⃗ ℎ⃗

𝑡−1 + 𝑏ℎ⃗⃗) (2)

Backward Pass:

ℎ𝑡⃖⃗ ⃗⃗ = 𝜎(𝑊ℎ⃗⃗⃖�⃖�𝑡 + 𝑈ℎ⃗⃗⃖ ℎ⃖⃗𝑡+1 + 𝑏ℎ⃗⃗⃖) (3)

Output in step t:

ℎ𝑡 = [ℎ𝑡⃗⃗ ⃗, ℎ𝑡⃖⃗ ⃗⃗] (4)

In the forward pass, input 𝑥𝑡⃗⃗ ⃗ at time step t is processed using the parameters 𝑊ℎ
⃗⃗ ⃗⃗ ⃗ and 𝑈ℎ⃗⃗ ⃗⃗ with previous

state ℎ⃗ 𝑡−1 to produce output ℎ𝑡⃗⃗ ⃗. It represents the information obtained from the beginning to the end of

the sequence. In the backward pass, input �⃖�𝑡 at the time step t processed using parameters 𝑊ℎ
⃖⃗ ⃗⃗ ⃗⃗ and 𝑈ℎ⃖⃗ ⃗⃗ ⃗

with previous state ℎ⃗⃖𝑡+1 to produce output ℎ𝑡⃗⃗ ⃗. It represents the information obtained from the end to the

beginning of the sequence. Output at timestep t where ℎ𝑡 is a composite of outputs from both directions

 ℎ𝑡⃗⃗ ⃗ and ℎ𝑡⃖⃗ ⃗⃗ which combines information from both directions and can provide a better understanding of

the context of each time step.

2.4. LSTM

LSTM (Long Short-Term Memory) is a variant of RNN designed to address the vanishing gradient

problem and is capable of preserving long-range dependencies in time series data. By incorporating

30

M Ridwan et al

multiple gates that regulate the flow of information, LSTM can model complex relationships in

sequential data.

Here is the equation and explanation of each part of the LSTM equation:
𝑖𝑡 = 𝜎(𝑊𝑖𝑥𝑡 + 𝑈𝑖ℎ𝑡−1 + 𝑏𝑖)

𝑓𝑡 = 𝜎(𝑊𝑓𝑥𝑡 + 𝑈𝑓ℎ𝑡−1 + 𝑏𝑓)

𝑜𝑡 = 𝜎(𝑊𝑜𝑥𝑡 + 𝑈𝑜ℎ𝑡−1 + 𝑏𝑜)
𝑔𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐𝑥𝑡 + 𝑈𝑐ℎ𝑡−1 + 𝑏𝑐)

𝑐𝑡 = 𝑓𝑡 ⊙ 𝑐𝑡−1 + 𝑖𝑡 ⊙𝑔𝑡
ℎ𝑡 = 𝑜𝑡 ⊙ tanh (𝑐𝑡)

(5)

(6)

(7)

(8)

(9)

(10)

𝑖𝑡 is an input gate or input gate that controls how much new information is from the current input (𝑥𝑡)
that will be inserted into the cell state (𝑐𝑡). This gateway can set whether new information is relevant to

updating cell state. 𝑓𝑡 is a forget gate that functions to control how much information from the previous

cell state (𝑐𝑡−1) will be deleted or forgotten. This gateway allows LSTM to adjust dependencies on

previous data. 𝑜𝑡 is the output gate. It controls how much information is from the cell state (𝑐𝑡) will be

used in generating actual output at the time step t. This gate can set how relevant the information of the

cell state is to the output. 𝑔𝑡 is a candidate cell state, i.e. the resulting value by combining the current

inputs (𝑥𝑡) and previous state (ℎ𝑡−1) After going through the hyperbolic tangent function (𝑡𝑎𝑛ℎ). 𝑐𝑡 is

the actual output at time step t produced by combining information from the cell state (𝑐𝑡) by going

through the output gate (𝑜𝑡) After going through the hyperbolic tangent function (𝑡𝑎𝑛ℎ). The

architecture of LSTM can be seen in Figure 3.

Figure 3. LSTM Architecture [12]

2.5. GRU

GRU (Gated Recurrent Unit) is a variant of the RNN designed to overcome weaknesses in the training

process in the RNN such as vanishing gradients. GRU has simpler features than LSTM because it only

has two gates (reset and update) compared to three gates (input, forget, and output) on LSTM. Although

more concise, GRU is still able to handle remote dependency problems and overcome vanishing gradient

problems that often occur in traditional RNNs.

The equation in GRU can be denoted as follows:
𝑧𝑡 = 𝜎(𝑊𝑧𝑥𝑡 + 𝑈𝑧ℎ𝑡−1)
𝑟𝑡 = 𝜎(𝑊𝑟𝑥𝑡 + 𝑈𝑟ℎ𝑡−1)

ℎ̃𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑧𝑥𝑡 + 𝑈ℎ(𝑟𝑡 ⊙ℎ𝑡−1)

ℎ𝑡 = (1 − 𝑧𝑡) ⊙ ℎ𝑡−1 + 𝑧𝑡 ⊙ ℎ̃𝑡

(11)

(12)

(13)

(14)

𝑧𝑡 is a reset gateway that helps the model decide how much information from previous time steps ℎ𝑡−1

which must be updated in generating ℎ𝑡. If 𝑧𝑡 close to 0 then the old information will be ignored. 𝑟𝑡 is

an update gateway that helps the model determine how much information from the current input (𝑥𝑡)
and previous information (ℎ𝑡−1) which is combined to produce the value ℎ𝑡. If 𝑟𝑡 close to 0 then the old

information will be ignored. ℎ̃𝑡 is a candidate state that is a provisional estimate for ℎ𝑡 generated taking

into account the current element (𝑥𝑡) and previous information (ℎ𝑡−1) After going through the reset

31

M Ridwan et al

gate 𝑟𝑡. ℎ𝑡 is the actual state at step time t calculated taking into account the reset gate (𝑧𝑡) to replace

some of the previous information (ℎ𝑡−1) with a new candidate state (ℎ̃𝑡). The architecture of GRU can

be seen in Figure 4.

Figure 4. GRU Architecture [12]

2.6. Data

The primary focus of this research is the stock price movement data of BCA (Bank Central Asia)

throughout the year 2022. This data was obtained from Google Finance, a reliable source for providing

financial market data.

Table 1. BBCA Stocks Data 2022

Time Stamp Open Low High Close Volume

03/01/2022 09:00 7325 7300 7350 7350 992300

03/01/2022 09:01 7325 7325 7350 7325 216500

03/01/2022 09:02 7325 7325 7350 7350 12100

.

.

30/12/2022 14:59 8550 8550 8550 8550 0

30/12/2022 15:00 8550 8550 8550 8550 11207900

Table 1 shows that the provided data includes information about stock price movements within 1-

minute intervals from January 3rd, 2022, to December 30th, 2022. Each data row contains several crucial

elements reflecting the dynamics of stock trading. Firstly, the 'Time Stamp' column indicates the time

at which the stock price data was recorded. This time interval ranges from 09:00 AM to 03:00 PM daily.

Table 2. Descriptive Statistics

Statistik Count Mean STD Min 25% 50% 75% Max

Value 59.532 7.999 511 7.000 7.600 7.900 8.475 9.375

Descriptive statistical analysis of the closing price data in Table 2 reveals several interesting insights.

The average closing price over the observed period is approximately 7,998.86. This indicates that

closing prices tend to cluster around this value overall. However, the relatively low standard deviation

of around 510.50 suggests that individual closing prices deviate moderately from the mean. The closing

price range from 7,000 to 9,375 reflects the existing variability in prices during the data period. The

quartiles also provide valuable insights. The first quartile (25%) is around 7,600, while the third quartile

(75%) is around 8,475. This implies that 25% of the data has closing prices below or equal to 7,600,

while another 25% has closing prices above or equal to 8,475. The median closing price, located at

7,900, divides the data into two halves, indicating a balance in the distribution of prices around this

value. Overall, this statistical analysis offers a comprehensive overview of the variability, central

tendencies, and distribution of closing prices within the observed dataset.

32

M Ridwan et al

Figure 5. Closing Price Plot and Trading Volume of BBCA Shares

Figure 5 depicts the minute-by-minute stock price movement data of BCA throughout the year 2022,

exhibiting characteristics that mirror financial market dynamics. These characteristics encompass rapid

price fluctuations and potentially high volatility. Over the course of that year, the data demonstrates

daily and weekly trends as well as price movements that may correlate with significant news or market

events. The plot of minute-by-minute closing prices on the final trading day of 2022 also reveals a

similar scenario, with changes in price trends observed throughout the day. This information establishes

a vital foundation for the subsequent steps, wherein feature engineering techniques will be applied, and

RNN models will be developed to predict intraday price movements based on this high-frequency data.

2.7. Analysis Methodology

The research workflow can be seen in Figure 6.

Figure 6. Stage Of Research

The initial step in this study's analysis involves extracting the closing prices from the data as the

primary focus of analysis. This is crucial as the closing prices reflect the stock's value at the end of each

trading interval. The subsequent step involves cleaning data outside the trading hours of the Indonesia

Stock Exchange (IDX). This ensures that relevant data is used for analysis, thereby leading to a better

understanding of market conditions.

The following step involves partitioning the data into training and testing sets. The training data,

covering the period from January 1st, 2022, to October 31st, 2022, is used to train the model. Meanwhile,

the testing data, spanning from November 1st, 2022, to December 31st, 2023, is used to assess the

33

M Ridwan et al

performance of the trained model. By segregating the data into two distinct subsets, we can observe how

well the model applies what it has learned from the training data to the testing data [13]. The plot

illustrating the division between training and testing data can be seen in Figure 7.

Figure 7. Training Data and Test Data Visualization

The more technical stage involves constructing various models. Four types of models will be built:

Simple RNN, Bidirectional RNN, LSTM, and GRU. Each model will be constructed by considering the

hyperparameter combinations in Table 3. In the context of machine learning or deep learning model

development, hyperparameters are configurations that need to be specified by the user before the training

process begins. First, the "Window Size" with a value of 50 refers to the number of recent data points

provided as input to the model. This can affect the model's ability to capture temporal patterns in time

series data. Next, "Units" refers to the number of neurons in a layer. With three variations [32, 64, 128],

Units will explore the appropriate model complexity level. The learning rate or "Learning Rate" has two

options [0.001, 0.0001], which will influence how much the model's weights are adjusted during

training. "Epochs" are indicated using the "Early Stop" mechanism, a technique where model training

is stopped early if there's no improvement in performance on validation data. The goal is to prevent

overfitting, where the model adapts too closely to random variations in the training data and fails to

generalize well to new data [14]. A "Batch Size" of 32 determines how many data points are processed

together in each training iteration. The value of "Validation Split" at 0.2 refers to the proportion of data

allocated as validation data during the model training process. In this context, 0.2 means that 20% of the

total data will be used as validation data, while the remaining 80% will be used as training data.

Table 3. Model Hyperparameters

Hyperparameter Value

Window Size 50

Units [32, 64, 128]

Learning Rate [0.001, 0.0001]

Epochs Early Stop

Activation Relu

Batch Size 32

Validation Split 0,2

By combining and adjusting these hyperparameters, we can guide the model to learn effectively and

generate accurate predictions in line with the data characteristics. The main objective is to find the

hyperparameter combinations that support the model in achieving optimal performance. This process

can be a significant part of the deep learning model training process.

After the process of training the model using the training data with various combinations of

hyperparameters is complete, the next step is to test the model's performance on the test data and

calculate the Mean Absolute Percentage Error (MAPE) for each model. Forecast accuracy can be

determined by assessing how well a model performs when applied to new data that wasn't used in the

model's training process [15]. MAPE provides insight into how accurate a model's predictions are in

34

M Ridwan et al

terms of a percentage error compared to the actual values. By comparing the MAPE values of different

models, we can identify the model that provides the most accurate and closest predictions to the actual

values. The reason for choosing MAPE as the accuracy metric over RMSE and MAE in the context of

comparing prediction errors in this study is that MAPE measures prediction errors in percentage form,

thus providing a clearer picture of the extent of errors in the context of the original data values [16].

3. Results and Discussion

The results of the analysis in the form of a comparison of MAPE values on the test data are summarized

in Table 4. This table serves as a crucial reference for understanding and comparing the performance of

each model in forecasting. From the average MAPE values generated, we can clearly identify that the

GRU model achieves the best performance with an average MAPE of 0.0255%. This indicates that GRU

can effectively capture and model patterns in time series data, resulting in more accurate forecasts.

Following that, the LSTM model has an average MAPE of 0.0377%, showing that LSTM can also

handle long-range dependencies in the data. Bidirectional RNN also demonstrates good performance

with an average MAPE of 0.0668%. On the other hand, the Simple RNN model has the highest average

MAPE value at 0.5118. The comparison plot of the MAPE values for each model can be seen in Figure

8.

Figure 8. Average MAPE Comparison of Models

There are several reasons why the RNN yields the highest MAPE value. First, RNNs struggle with

handling long-range relationships in time series data, leading to difficulties in capturing patterns

associated with broader time frames, especially in datasets with complex characteristics. Second, the

vanishing gradient problem when dealing with long sequences diminishes the model's adaptability to

intricate patterns. Third, the simplistic architecture of RNN makes it less effective in addressing time

series data with more complex interactions [17].

Table 4 unveils the crucial impact of the number of units and the learning rate on model performance.

Increasing the number of units generally enhances the model's ability to understand patterns within the

data, parallel to its complexity increment [18]. However, it's important to note that using a large number

of units also leads to longer training times. Furthermore, lower learning rates seem to yield better

performance outcomes by enabling the model to adapt more precisely to the data. This table also

underscores the importance of adjusting hyperparameters to optimize model performance. The number

of units, learning rate, and number of epochs play a pivotal role in the final forecasting outcome. Hence,

the selection of hyperparameters must be meticulously done, and aligned with the data characteristics

and desired forecasting objectives. Training time efficiency is also a vital consideration in model

selection. The table illustrates that certain model configurations may have longer training times.

Therefore, apart from performance, time efficiency also needs to be considered, especially in contexts

requiring swift responses.

35

M Ridwan et al

Table 4. Model MAPE Comparison

Model Units
Learning

Rate
Epoch

Total

Training

Time

MAPE

(%)
 Model Units

Learning

Rate
Epoch

Total

Training

Time

MAPE

(%)

Simple

RNN

32
0,001 40 81,77 0,4841

LSTM

32
0,001 77 183,39 0,0557

0,0001 22 44,72 0,3090 0,0001 65 146,54 0,1329

64
0,001 24 49,54 0,1320

64
0,001 41 97,09 0,0055

0,0001 34 68,36 0,8348 0,0001 28 73,13 0,0095

128
0,001 21 50,86 0,8737

128
0,001 19 74,91 0,0127

0,0001 24 52,55 0,4370 0,0001 15 46,27 0,0100

Average 57,97 0,5118 Average 103,56 0,0377

Bidirectional

RNN

32
0,001 16 56,22 0,3335

GRU

32
0,001 24 57,22 0,0060

0,0001 25 81,95 0,0068 0,0001 65 145,05 0,0092

64
0,001 15 54,50 0,0051

64
0,001 63 150,38 0,0027

0,0001 36 128,45 0,0489 0,0001 17 42,44 0,0159

128
0,001 14 58,71 0,0035

128
0,001 15 55,07 0,0220

0,0001 11 48,88 0,0028 0,0001 15 50,35 0,0970

Average 71,45 0,0668 Average 83,42 0,0255

In the analysis of prediction results on the test data, it is evident that the GRU model performs well

in following the patterns of the test data. The GRU model with a configuration of 64 units, a learning

rate of 0.0001, and the 63rd epoch is chosen as the best model in this study. This configuration yields

the smallest MAPE value of 0.0027%. This is observed in the plot illustrating the comparison between

the GRU model's prediction results and the actual test data. In this plot, it's apparent that the line

representing the GRU model's predictions tends to stay within the range of actual test data values,

indicating the model's ability to approximate the actual movement of closing stock prices. In the

sequence of data plots, particularly on the last day (the last 242 data points), the GRU model

demonstrates exceptional adaptability to the movement of the test data's closing stock prices. This

signifies that the GRU model is adept at swiftly responding to fluctuations in the test data and adjusting

its predictions according to the actual trends that unfold. This adaptive capability stems from the GRU

architecture, designed specifically to handle time series data more effectively.

Figure 9. GRU Model Predictions on Test Data

Figure 10 shows the graph of train loss and validation loss of the GRU model with 64 units and a

learning rate of 0.001. The train loss graph of the best model demonstrates a steady decreasing trend as

the training progresses on the training data, indicating that the model consistently learns the patterns

within the training data and minimizes prediction errors. The validation loss graph also exhibits a stable

or consistent decreasing trend as the training proceeds on the training data, indicating that the model can

generalize well to unseen validation data. An ideal graph is one that shows a steady decreasing trend in

both train loss and validation loss, with a small difference between them [19].

36

M Ridwan et al

Figure 10. Training and Validation Loss of the GRU Model

Scientifically, the success of the GRU model in following the patterns of the test data can be

explained by the gating mechanism inherent in the GRU architecture. The gating mechanism enables

the GRU to selectively control the flow of information within the cell, allowing the model to recognize

and address changes occurring in time series data. Moreover, GRU also possesses a strong short-term

memory capability, allowing the model to retain relevant information from several previous time steps,

which may contribute to its adaptive capacity [20]. With the GRU model's ability to closely track test

data patterns and exhibit high adaptability, it provides empirical support for the effectiveness of the

GRU architecture in forecasting high-frequency time series data such as stock prices.

4. Conclusion

This study presents a comparison of the performance of Simple RNN, Bidirectional RNN, LSTM, and

GRU models in forecasting minute-level stock price time series data. The experimental results reveal

that the GRU model outperforms the others, exhibiting the lowest average MAPE of 0.0255%, followed

by the LSTM model with an average MAPE of 0.0377%. Meanwhile, the Bidirectional RNN model

achieves an average MAPE of 0.0668%, and the Simple RNN model has the highest average MAPE of

0.5118%. This indicates that more complex recurrent architectures like GRU and LSTM have better

capabilities in capturing patterns in high-frequency time series data. This study could be extended by

exploring other models such as CNN, conducting tests on diverse types of datasets, and experimenting

with a wider range of hyperparameter variations. Additional variables such as economic indicators,

global market data, and social data could provide a more comprehensive understanding of the factors

influencing stock prices.

References

[1] F. X. Diebold and G. D. Rudebusch, “Forecasting output with the composite leading index: A

real-time analysis,” J Am Stat Assoc, vol. 86, no. 415, 1991, doi:

10.1080/01621459.1991.10475085.

[2] T. Donkers, B. Loepp, and J. Ziegler, “Sequential user-based recurrent neural network

recommendations,” in RecSys 2017 - Proceedings of the 11th ACM Conference on

Recommender Systems, 2017. doi: 10.1145/3109859.3109877.

[3] J. Zhao, D. Zeng, S. Liang, H. Kang, and Q. Liu, “Prediction model for stock price trend based

on recurrent neural network,” J Ambient Intell Humaniz Comput, vol. 12, no. 1, 2021, doi:

10.1007/s12652-020-02057-0.

[4] Z. Li, J. Han, and Y. Song, “On the forecasting of high‐frequency financial time series based on

ARIMA model improved by deep learning,” J Forecast, vol. 39, no. 7, pp. 1081–1097, Nov.

2020, doi: 10.1002/for.2677.

[5] G. Taroon, A. Tomar, C. Manjunath, M. Balamurugan, B. Ghosh, and A. V. N. Krishna,

“Employing Deep Learning in Intraday Stock Trading,” in Proceedings - 2020 5th

37

M Ridwan et al

International Conference on Research in Computational Intelligence and Communication

Networks, ICRCICN 2020, 2020. doi: 10.1109/ICRCICN50933.2020.9296174.

[6] I. Jebli, F. Z. Belouadha, M. I. Kabbaj, and A. Tilioua, “Deep learning based models for solar

energy prediction,” Advances in Science, Technology and Engineering Systems, vol. 6, no. 1,

2021, doi: 10.25046/aj060140.

[7] J. Qiu, B. Wang, and C. Zhou, “Forecasting stock prices with long-short term memory neural

network based on attention mechanism,” PLoS One, vol. 15, no. 1, 2020, doi:

10.1371/journal.pone.0227222.

[8] D. Saravanan and K. Santhosh Kumar, “Improving air pollution detection accuracy and quality

monitoring based on bidirectional RNN and the Internet of Things,” Mater Today Proc, 2022,

doi: 10.1016/j.matpr.2021.04.239.

[9] R. Gençay, M. Dacorogna, U. A. Muller, O. Pictet, and R. Olsen, An introduction to high-

frequency finance. Elsevier, 2001.

[10] Frank J. Fabozzi, Encyclopedia of Financial Models. Wiley, 2012. doi: 10.1002/9781118182635.

[11] T. G. Andersen, “Some Reflections on Analysis of High-Frequency Data,” Journal of Business

& Economic Statistics, vol. 18, no. 2, p. 146, Apr. 2000, doi: 10.2307/1392552.

[12] I. Vasilev, Advanced Deep Learning with Python. 2019.

[13] I. Oxaichiko Arissinta, I. Dwi Sulistiyawati, and D. Kurnianto Iqbal Kharisudin, “Pemodelan

Time Series untuk Peramalan Web Traffic Menggunakan Algoritma Arima,” Prosiding

Seminar Nasional Matematika, vol. 5, 2022.

[14] X. Ying, “An Overview of Overfitting and its Solutions,” in Journal of Physics: Conference

Series, 2019. doi: 10.1088/1742-6596/1168/2/022022.

[15] R. J. Hyndman and G. Athanasopoulos, Forecasting: Principles and Practice. 2013.

[16] J. Purnama and A. Juliana, “Analisa prediksi indeks harga saham gabungan menggunakan metode

ARIMA,” Cakrawala Management Business Journal, vol. 2, no. 2, pp. 454–468, 2020.

[17] I. Nasirtafreshi, “Forecasting cryptocurrency prices using Recurrent Neural Network and Long

Short-term Memory,” Data Knowl Eng, vol. 139, 2022, doi: 10.1016/j.datak.2022.102009.

[18] M. A. Hannan, D. N. T. How, M. Bin Mansor, M. S. Hossain Lipu, P. Ker, and K. Muttaqi, “State-

of-Charge Estimation of Li-ion Battery Using Gated Recurrent Unit with One-Cycle Learning

Rate Policy,” IEEE Trans Ind Appl, vol. 57, no. 3, 2021, doi: 10.1109/TIA.2021.3065194.

[19] Wei-Meng Lee, “Introduction to Deep Learning,”

https://codemagrefresh.azurewebsites.net/Article/2003071/Introduction-to-Deep-Learning.

[20] K. Cho et al., “Learning Phrase Representations using RNN Encoder-Decoder for Statistical

Machine Translation,” Jun. 2014.

