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Abstract. The Poisson model is commonly used for modelling count data. However, it has a 

limitation, namely the equality between the mean and variance (equidispersion) of the data to be 

modeled. Unfortunately, overdispersion (variance greater than the mean) and underdispersion 

(variance smaller than the mean) are more often to be found in real cases. Therefore, different 

models need to be used to handle data with these cases. The hyper-Poisson model is one model 

that can be used to handle overdispersion or underdispersion cases flexibly. This paper describes 

the hyper-Poisson model and its application on overdispersed and underdispersed count data. 

Insurance policy claims data and red mites’ appearance data are used in modelling overdispersed 

data. Meanwhile, miners’ strikes data and pairs of shoes data are used in modelling 

underdispersed data. By modelling these data using hyper-Poisson and its comparison 

distribution, it shows that the hyper-Poisson distribution can model overdispersed or 

underdispersed data flexibly even though there is possibility that there are other distributions that 

can model it better. 

1. Introduction 

Count data is counting result data that describes the number of occurrences of an event in a given time 

period [1]. The value of count data is a non-negative integer because an event cannot occur in a negative 

number of integers. Count data modelling is widely used in various sciences such as actuarial science, 

health, demography, transportation, and others. 

Counting distributions used to model count data. Counting distributions are discrete distributions 

with probabilities only on non-negative integers [2]. The Poisson model is a counting distribution which 

commonly used for modelling count data. However, it is constrained by its equidispersion assumption. 

In real data, often this assumption is not fulfilled, where the variance is greater than the mean 

(overdispersion) or the variance is smaller than the mean (underdispersion). Data with overdispersion 

or underdispersion is not suitable to be modelled with Poisson distribution. Ignoring these circumstances 

and still using Poisson distribution will cause some possible problems such as incorrect estimations of 

parameters and standard error, incorrect interpretation of the considered model, and more [3]. 

In 1964, Bardwell and Crow introduced an alternative that could model data with overdispersion or 

underdispersion cases flexibly. This model is called the hyper-Poisson model. They formed this 

distribution through the relationship of the derivative of the Poisson distribution to the differential-

difference relation of the Poisson distribution [4]. Then, in 2018, Lesaris took a different approach in 

forming this distribution. The hyper-Poisson is formed through recursive properties of extended 

Lagrangian Katz family of distributions [5].  
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In this paper, the main properties of the hyper-Poisson model are summarized, and its parameters are 

estimated with method of moments. This method is used due to complexity of hyper-Poisson’s 

parameters, so method of moments will estimate the parameters simpler and easier. In the final section, 

the model is applied to overdispersion and underdispersion count data. The first two data sets are 

overdispersed data from vehicle insurance policy claims and red mites’ appearance. Meanwhile next 

two data sets are underdispersed data from frequency of coal miners strikes and number of pairs of 

shoes. All of data sets will also be modelled with other distribution as comparison to hyper-Poisson. 

Negative Binomial will be applied to overdispersed data and Binomial will be applied to underdispersed 

data. 

2. Count Data Distribution  

Count data distribution is a probability distribution that used in modelling discrete type random variable. 

Some examples of count data distribution are Poisson distribution, Binomial distribution, and Negative 

Binomial distribution. 

2.1. Poisson Distribution 

Suppose a random variable 𝑋 has a probability density function: 

𝑓(𝑥) = {
𝜃𝑥𝑒−𝜃

𝑥!
, 𝑥 = 0,1,2,3…

0, elsewhere

 (1) 

this random variable is said to have a Poisson distribution with parameter 𝜃. Poisson distribution has 

same mean value and variance value (equidispersion) that is 𝜃, which means that this distribution is 

suitable for modelling data that meets this equidispersion assumption [2]. 

2.2. Binomial Distribution 

Suppose a random variable 𝑋 has a probability density function: 

𝑓(𝑥) = {
(
𝑛

𝑥
)𝑝𝑥𝑞𝑛−𝑥, 𝑥 = 0,1,2,… , 𝑛

0, elsewhere
 (2) 

where 𝑛 is number of Bernoulli trials, 𝑥 is desired number of successes out of 𝑛 trials, 𝑝 is probability 

of success in a trial, and 𝑞 = 1 − 𝑝, then this random variable is said to have a Binomial distribution 

with parameters 𝑛 and 𝑝. Binomial distribution has mean value 𝑛𝑝 and variance value 𝑛𝑝(1 − 𝑝). These 

values show that Binomial distribution has greater mean value than variance value (underdispersion). 

So, this distribution is suitable for modelling data that meets this underdispersion assumption [2]. 

2.3. Negative Binomial Distribution 

Suppose a random variable 𝑋 has a probability density function: 

𝑓(𝑥) = {
(
𝑘 + 𝑥 − 1

𝑥
)𝑝𝑘𝑞𝑥, 𝑥 = 0,1,2,3,…

0, elsewhere

 (3)  

where 𝑘 is desired number of successes, 𝑥 is number of failures before the 𝑘-th success, 𝑝 is probability 

of success in a trial, and 𝑞 = 1 − 𝑝, then this random variable is said to have a Negative Binomial 

distribution with parameters 𝑘 and 𝑝. Negative Binomial distribution has mean value 
𝑘𝑞

𝑝
 and variance 

value 
𝑘𝑞

𝑝2
. These values show that Negative Binomial distribution has greater variance value that mean 

value (overdispersion). So, this distribution is suitable for modelling data that meets this overdispersion 

assumption [6]. 
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3. Neyman-Scott Test 

The Neyman-Scott test is a statistical test used to check whether a population follows a Poisson 

distribution or not. The null hypothesis of this test is the population follows a Poisson distribution, so it 

can be modelled by Poisson distribution. Meanwhile, its alternative hypothesis is the population does 

not follow a Poisson distribution, so it has to be modelled by other suitable distribution. This test has 

test statistics given below: 

𝑇𝑁𝑆 = √
𝑛 − 1

2
(
𝑆2

𝑋̅
− 1) 

(4)  

where 𝑛 is number of observations, 𝑆2 is the variance of the data, 𝑋̅ is the mean of the data, and 𝑇𝑁𝑆 

distribution is approaching normal standard. The null hypothesis of this test is rejected on 𝛼 level of 

significance if |𝑇𝑁𝑆| > Φ
−1(1 − 𝛼) where Φ−1(𝑥) is notation of standard normal cumulative 

distribution function at 𝑥. For 𝛼 = 0.05, the null hypothesis of this test is rejected if the absolute value 

of 𝑇𝑁𝑆 is greater than 1.645. 

This test also indicates whether the population is experiencing overdispersion or underdispersion. If 

|𝑇𝑁𝑆| > Φ
−1(1 − 𝛼) and 𝑇𝑁𝑆 > 0, then the population is experiencing overdispersion. Otherwise, if 

|𝑇𝑁𝑆| > Φ
−1(1 − 𝛼) and 𝑇𝑁𝑆 < 0, then the population is experiencing underdispersion [7]. 

4. The hyper-Poisson Distribution  

The hyper-Poisson distribution has a probability mass function given below: 

𝑓(𝑥) = {

Γ(𝛾)𝛼𝑥

Γ(𝛾 + 𝑥)𝑀(1; 𝛾; 𝛼)
, 𝑥 = 0,1,2,3… ; 𝛼 > 0; 𝛾 > 0

0, elsewhere

 (5)  

where 𝛼 > 0, 𝛾 > 0, and 

𝑀(1; 𝛾; 𝛼) = ∑
(1)𝑥
(𝛾)𝑥𝑥!

𝛼𝑥
∞

𝑥=0

 (6)  

is the confluent hypergeometric series and (𝑎)𝑥 = 𝑎(𝑎 + 1)… (𝑎 + 𝑥 − 1) for 𝑎 > 0 and 𝑥 a positive 

integer [8]. Main characteristic in this distribution is its parameter 𝛾 that shows overdispersed, 

equidispersed, or underdispersed case. If 𝛾 > 1, it shows overdispersed case, equidispersed case if 𝛾 =
1, and underdispersed case if 0 < 𝛾 < 1. That is because 𝛾 interprets dispersion or scale parameter, 

while 𝛼 interprets shape parameter. 

The cumulative distribution function is given by: 

Γ(𝛾)

𝑀(1; 𝛾; 𝛼)
∑

𝛼𝑤

Γ(𝛾 + 𝑤)

𝑥

𝑤=0

  ;   𝑤 ≥ 0, 𝛾 > 0, 𝛼 > 0 (7)  

Also, the probability generating function is given by: 

𝐺(𝑧) =
𝑀(1; 𝛾; 𝛼𝑧)

𝑀(1; 𝛾; 𝛼)
 (8)  

In order to display dispersion and shape parameters, there will be presented some graphs of the 

probability density function of the hyper-Poisson distribution. The following graph is a hyper-Poisson 

distribution density function with 𝛼 = 3 and 𝛾 varied. 
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 Figure 1. Probability Density Function of hyper-Poisson 

Distribution with 𝛾 Varied.  

According to 0, the density function of hyper-Poisson distribution with 𝛼 = 3 has two maximum 

points for 𝛾 = 1, meanwhile for 𝛾 = 0.5 and 𝛾 = 1.5 only have one maximum point. Also, as the value 

of the parameter 𝛾 increases, the probability density function of the hyper-Poisson distribution will have 

lighter distribution tail. Next graph below is the hyper-Poisson graph with the values of 𝛾 = 0.5 , 1, and 

0.5 with 𝛼 varied, as well as the Poisson distribution graph with parameter 𝛼. 

 

 Figure 2. Probability Density Function of hyper-Poisson Distribution with 𝛼 Varied.  

According to 0, the density function of hyper-Poisson distribution with 𝛾 = 0.5 and 1.5 have a peak 

that decreases as the value of parameter 𝛼 increases. It can also be seen that for 𝛾 = 1, the probability 

density function graph has two peaks and decreases as the value of parameter 𝛼 increases. The graph of 

the probability density function of the hyper-Poisson distribution with 𝛾 = 1 also has the same graphical 

shape as the probability density function of the Poisson distribution with the corresponding 𝛼. This 

shows that the hyper-Poisson distribution will become a Poisson distribution with parameter 𝛼 for 𝛾 =
1.  
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4.1. Mean and Variance by Probability Generating Function 

Mean and variance can be obtained through the properties of the probability generating function, that 

is: 

𝐸(𝑋) = 𝐺′(1) 
𝑉𝑎𝑟(𝑋) = 𝐺′′(1) + 𝐺′(1) − [𝐺′(1)]2 

First, the probability generating function will be derived twice to obtain 𝐺′(𝑧) and 𝐺′′(𝑧): 

𝐺′(𝑧) =
𝛼

𝛾

𝑀(2; 𝛾 + 1; 𝑎𝑧)

𝑀(1; 𝛾; 𝛼)
 

𝐺′′(𝑧) =
2𝛼2

𝛾(𝛾 + 1)

𝑀(3; 𝛾 + 2; 𝑎𝑧)

𝑀(1; 𝛾; 𝛼)
 

Second, by substituting 𝑧 = 1 and supposing Λ𝑘 =
𝑀(1+𝑘;𝛾+𝑘;𝛼)

𝑀(1;𝛾;𝛼)
, mean and variance will be obtained: 

𝐸(𝑋) =
𝛼

𝛾
Λ1 (9) 

𝑉𝑎𝑟(𝑋) =
𝛼

𝛾
Λ1 +

𝛼2

𝛾
(
2

𝛾 + 1
Λ2 −

1

𝛾
Λ1
2) (10) 

4.2. Mean and Variance by Recurrence Relation  

If the expression of mean and variance by probability generating function is considered complicated, 

there is another way to obtain mean and variance by recurrence relation of the hyper-Poisson 

distribution. It can be proved that equation 0 verifies the recurrence equation: 

(𝛾 + 𝑥)𝑓(𝑥 + 1) = 𝛼𝑓(𝑥) (11)  

From this equation, multiplying both members by (𝑥 + 1)𝑘 and adding on 𝑥 will obtain moment 

equation. 

(𝛾 − 1)𝐸(𝑋𝑘) + 𝐸(𝑋𝑘+1) = 𝛼∑(
𝑘
𝑖
)𝐸(𝑋𝑖)

𝑘

𝑖=0

 (12)  

If 𝑘 = 1, there will be an equation that contains first moment (mean) and second moment: 

𝐸(𝑋2) = 𝛼 + (𝛼 − (𝛾 − 1))𝐸(𝑋) (13)  

Adding equation 0 on 𝑥 will obtain value of 𝐸(𝑋) (mean). 

𝐸(𝑋) = 𝛼 − (𝛾 − 1)(1 − 𝑓(0)) (14)  

Because value of 𝐸(𝑋) and 𝐸(𝑋2) are already known, value of variance can be obtained: 

𝑉𝑎𝑟(𝑋) = 𝛼 + (𝛼 − (𝛾 − 1))𝐸(𝑋) − 𝐸(𝑋)2 
(15) 

5. Parameter Estimation of hyper-Poisson Distribution 

Parameter estimation of the hyper-Poisson distribution is estimated by the method of moments because 

the hyper-Poisson distribution has a gamma function in it. With this gamma function, the maximum 

likelihood method will be very difficult to apply. Therefore, the method of moments is chosen in 

estimating the parameters. Method of moments is a method that equates population moment 𝐸(𝑋𝑘) and 

sample moment 𝑀𝑘 starting from 𝑘 = 1 until there are enough equations to find parameter estimates 

[9]. 

Moments of hyper-Poisson distribution obtained from equation 0. By substituting 𝑘 = 1 and 𝑘 = 2, 

second moment and third moment will be obtained while first moment has obtained from equation 0. 

By method of moments, the following equation is obtained: 
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𝑀1 = 𝐸(𝑋) 
𝑀2 = 𝐸(𝑋

2) 
𝑀3 = 𝐸(𝑋

3) 

where 𝑀1,𝑀2, and 𝑀3 are first, second, and third sample moment of a hyper-Poisson distributed random 

sample. By solving these equations, estimated parameter of hyper-Poisson distribution will be obtained 

as follows: 

𝛼̂ =
𝑀1𝑀3 −𝑀2

2

2𝑀1
2 +𝑀1 −𝑀2

 (16) 

𝛾 = 1 +
𝑀1𝑀3 +𝑀3 −𝑀2

2 −𝑀2 − 2𝑀1𝑀2

2𝑀1
2 +𝑀1 −𝑀2

 
(17) 

6. Applications 

In this section, the hyper-Poisson distribution is used to model overdispersed and underdispersed count 

data. Other distribution will also be used as comparison distribution.  

6.1. Overdispersed Count Data 

6.1.1. Vehicle Insurance Policy Claims Data. The data set that used in this subsection is vehicle 

insurance policy claims of a Turkish insurance company occurred between 2012 and 2014. The data 

contains six categories of claim frequency and 10814 observations (policyholders) [10].                                 

Table 1. Vehicle Insurance Policy Claims 

Claim Frequency Observed Values 

0 8544 

1 1796 

2 370 

3 81 

4 22 

5 1 

This data set has mean value 0.265582 and variance value 0.334681. Greater variance value shows 

that this is an overdispersed data set. This overdispersed claim can also be proven by Neyman-Scott test. 

The test statistic of Neyman-Scott 𝑇𝑁𝑆 for this data is 19.13072. This shows that this data is experiencing 

overdispersion. Thus, this data will be modelled with hyper-Poisson distribution and Negative Binomial 

distribution as comparison distribution. The method of moments was used to estimate each distribution’s 

parameter. 

Table 2. Result Comparison between hyper-Poisson and Negative Binomial 

Claim 

Frequency Observed Values 

Expected Values 

hyper-Poisson 

Negative 

Binomial 

0 8544 8540.594408 8540.205104 

1 1796 1798.714248 1799.838904 

2 370 376.240688 375.46208 

3 81 78.163592 78.055452 

≥ 4 23 19.443572 19.562526 

Method of Moments Estimation 
𝛼̂ = 30.645328 𝑘̂ = 1.020761 

𝛾 = 145.508893 𝑝̂ = 0.793537 

Degree of freedom 2 2 

𝜒0.05;df
2  5.991 5.991 

𝜒2 0.862403 0.804438 
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Mean 0.265583 0.265582 

Variance 0.3346 0.334682 

Through the chi-square value, it can be seen that the hyper-Poisson distribution has a chi-square 

value of 0.862403 and the Negative Binomial distribution has a chi-square value of 0.804438. This result 

also shows small difference of mean and variance values from model and data. From this comparison, 

it can be concluded that Negative Binomial is slightly better to model the data than hyper-Poisson, but 

both distributions are still suitable in modelling the data. 

6.1.2. Count of Red Mites on Apple Leaves Data. The second data set that used for modelling 

overdispersion is observed red mites on apple leaves. The data contains eight categories of appearance 

frequency and 150 observations [11]. 

Table 3. Red Mites on Apple Leaves 

Appearance Frequency Observed Values 

0 70 

1 38 

2 17 

3 10 

4 9 

5 3 

6 2 

7 1 

This set has mean value 1.146667 and variance value 2.258488. Greater variance value shows that 

this is an overdispersed data set. This overdispersed claim can also be proven by Neyman-Scott test. 

The test statistic of Neyman-Scott 𝑇𝑁𝑆 for this data is 8.369041. This shows that this data is experiencing 

overdispersion. Thus, this data will be modelled with hyper-Poisson distribution and Negative Binomial 

distribution as comparison distribution. The method of moments was used to estimate each distribution’s 

parameter. 

Table 4. Result Comparison between hyper-Poisson and Negative Binomial 

Claim 

Frequency Observed Values 

Expected Values 

hyper-Poisson 

Negative 

Binomial 

0 70 67.4697 67.2909 

1 38 38.3436 39.17535 

2 17 21.1521 21.0462 

3 10 11.33595 10.9914 

4 9 5.907 5.65785 

≥ 5 6 5.1855 5.0913 

Method of Moments Estimation 
𝛼̂ = 18.814195 𝑘̂ = 1.182605 

𝛾 = 33.10564 𝑝̂ = 0.507715 

Degree of freedom 3 3 

𝜒0.05;df
2  7.815 7.815 

𝜒2 2.817941 3.148075 

Mean 1.149612 1.146664 

Variance 2.212575 2.25848 

Through the chi-square value, it can be seen that the hyper-Poisson distribution has a chi-square 

value of 2.817941 and the Negative Binomial distribution has a chi-square value of 3.148075. This result 
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shows that hyper-Poisson is better to model the data than Negative Binomial, but both distributions are 

still suitable in modelling the data. 

 

6.2. Underdispersed Count Data 

6.2.1. Coal Miners’ Strikes Data. The data set that used in this subsection is frequency of coal miners 

strikes over a 4-weeks period in UK. The data contains five categories of strike frequency and 156 

observations [12]. 

Table 5. Coal Miner’s Strike 

Strike Frequency Observed Values 

0 46 

1 76 

2 24 

3 9 

4 1 

This data set has mean value 0.99359 and variance value 0.737138. Greater mean value shows that 

this is an underdispersed data set. Just like overdispersed data before, this underdispersed claim can also 

be proven by Neyman-Scott test [7]. The test statistic of Neyman-Scott 𝑇𝑁𝑆 for this data is -2.27222. 

This shows that this data is experiencing underdispersion. Thus, this data will be modelled with hyper-

Poisson distribution and Binomial distribution as comparison distribution. The method of moments was 

used to estimate each distribution’s parameter. 

Table 6. Result Comparison between hyper-Poisson and Binomial 

Claim 

Frequency Observed Values 

Expected Values 

hyper-Poisson Binomial 

0 46 48.281220 49.430940 

1 76 71.148636 66.201096 

2 24 28.642692 32.814600 

≥ 3 10 7.773012 7.558356 

Method of Moments Estimation 
𝛼̂ = 0.553889 𝑛̂ = 3.849534 

𝛾 = 0.375867 𝑝̂ = 0.258107 

Degree of freedom 1 1 

𝜒0.05;df
2  3.841 3.841 

𝜒2 1.829153 4.845053 

Mean 0.984856 Model does not fit 

Variance 0.74413 Model does not fit 

Through the chi-square value, it can be seen that the hyper-Poisson distribution has a chi-square 

value of 1.829153 and the Binomial distribution has a chi-square value of 4.845053. From this 

comparison of chi-square values, it can be concluded that hyper-Poisson has much better chi-square 

values than Binomial. With chi-square values that exceed 3.841, Binomial distribution is not fit to model 

this data. 

6.2.2. Pairs of Shoes Data. The data set that used in this subsection is the number of pairs of running 

shoes owned by running club members. The data contains five categories of number of pairs and 60 

observations [13]. 

Table 7. Number of Pairs of Running Shoes 

Number of Pairs Observed Values 

1 18 
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2 18 

3 12 

4 7 

5 5 

This data set has mean value 2.383333 and variance value 1.569724. Greater mean value shows that 

this is an underdispersed data set. Just like overdispersed data before, this underdispersed claim can also 

be proven by Neyman-Scott test. The test statistic of Neyman-Scott 𝑇𝑁𝑆 for this data is -1.85414. This 

shows that this data is experiencing underdispersion. Thus, this data will be modelled with hyper-

Poisson distribution and Binomial distribution as comparison distribution. The method of moments was 

used to estimate each distribution’s parameter. 

Table 8. Result Comparison between hyper-Poisson and Binomial 

Claim 

Frequency Observed Values 

Expected Values 

hyper-Poisson Binomial 

1 18 14.2512 11.7627 

2 18 20.4459 18.23418 

3 12 14.70414 15.69372 

4 7 7.05594 8.09682 

5 5 2.54046 2.50254 

Method of Moments Estimation 
𝛼̂ = 1.442039 𝑛̂ = 6.981578 

𝛾 = 0.005132 𝑝̂ = 0.341375 

Degree of freedom 2 2 

𝜒0.05;df
2  5.991 5.991 

𝜒2 4.157667 6.820738 

Mean 2.436066 Model does not fit 

Variance 1.444088 Model does not fit 

Through the chi-square value, it can be seen that the hyper-Poisson distribution has a chi-square 

value of 4.157667 and the Binomial distribution has a chi-square value of 6.820738. From this 

comparison of chi-square values, it can be concluded that hyper-Poisson has much better chi-square 

values than Binomial. With chi-square values that exceed 5.991, Binomial distribution is not fit to model 

this data. 

6.3. Conclusion 

In the previous section, modelling overdispersed and underdispersed data with the hyper-Poisson 

distribution and with its comparison distributions has been done. In the case of overdispersion, it can be 

seen that both distributions are equally good at modelling data as seen from small difference in chi-

square values. For the first data, it can be seen that Negative Binomial is slightly better to model the 

data than hyper-Poisson, but both distributions are still suitable in modelling the data. But, for the second 

data, it can be seen that hyper-Poisson is better to model the data. Meanwhile, in the case of 

underdispersion, the hyper-Poisson distribution is better at modelling both data compared to Binomial 

distribution. So, from these data illustrations, it can be concluded that the hyper-Poisson distribution can 

model overdispersed or underdispersed data even though there is possibility that there are other 

distributions that can model it better.  

7. Discussion 

The proposed model that is hyper-Poisson appears to be an enticing alternative to model overdispersed 

and underdispersed count data. It has shown that hyper-Poisson distribution is a flexible distribution to 

model data with different circumstances such as overdispersed, equidispersed, and underdispersed. 

This paper also shows some of hyper-Poisson distribution properties such as probability generating 

function, mean, and variance. Parameter 𝛾 in this distribution interprets dispersion parameter, thus 𝛾 can 
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show whether the data is overdispersed, equidispersed, or underdispersed. It is also possible to show 

that hyper-Poisson with 𝛾 = 1 is a Poisson distribution with the corresponding 𝛼. 

Finally, hyper-Poisson is applied to model overdispersed and underdispersed data. From the data 

illustrations, they show that hyper-Poisson can model overdispersed and underdispersed data well even 

though there could be better distribution to model the data. Nevertheless, hyper-Poisson provides an 

advantage to model the data flexibly with only one distribution.  
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