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Abstract. Copula can link the bivariate distribution function with marginal distribution functions 

without requiring specific information about the interdependence among random variables. 

There are several types of copulas, such as elliptical copulas, Archimedean copulas, and extreme 

value copulas. However, in multivariate modeling, each type of copula has limitations in 

modeling complex dependence structures in terms of symmetry and tail dependence properties. 

The class of vine copulas overcomes these limitations by constructing multivariate models using 

bivariate copulas in a tree-like structure. The bivariate copulas used in this study include the 

Clayton, Gumbel, Frank, Gaussian, and Student's t copula families. This study discusses the 

construction of vine copula models, parameter estimation, and their applications. The 

construction of vine copulas is done through the decomposition of conditional probability density 

functions and substituting bivariate copula density functions into the decomposition results. The 

data used in the study is the logarithm of the concentration of chemical elements in water samples 

in Colorado. The parameter estimation method used is pseudo-maximum likelihood with 

sequential estimation. Model selection is then performed using the Akaike information criterion 

(AIC) to determine the most suitable model. The results indicate that Caesium and Titanium 

have a dependency relationship with Scandium. Moreover, Scandium and Titanium exhibit the 

strongest dependence compared to other variable pairs. 

1. Introduction 

Each event in life occurs due to various causes and interacting conditions that are interconnected. 

Everything that exists is a condition that influences others, and vice versa. There is a complex 

interrelation among various factors and conditions that mutually influence each other [10]. An event can 

be influenced by multiple factors simultaneously, and its impact can also spread to other factors and 

conditions. For instance, in an economic context, if a country drastically raises its interest rates, it can 

increase investor interest in investing their money in that country's currency. The demand for that 

currency will increase, potentially leading to an appreciation in the currency's exchange rate, and vice 

versa. To measure this interdependence, it can be examined through the covariance of these two factors. 

Although covariance provides information about the nature of the relationship between two random 

variables, it does not indicate the strength of the relationship because covariance is not scale-free; its 

magnitude depends on the units used to measure both variables [30]. There is a scale-free version of 

covariance known as the correlation coefficient. The most common form of this linear correlation 

coefficient is known as Pearson's correlation coefficient. According to Czadzo [8], Pearson's correlation 

coefficient is a measure of linear dependence whose values range between -1 and 1. 
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Despite Pearson's correlation coefficient being widely used to measure dependence between 

variables, there are limitations to its application. One limitation is that it cannot explain the relationship 

between randomly distributed non-elliptical variables [11]. An elliptical distribution is an extension of 

the multivariate normal distribution, where the distribution's shape can be represented by an ellipsoid. 

To address the limitations of Pearson's correlation coefficient, the use of copulas can be considered. 

According to Nelsen [24],  the term "copula" originates from Latin and means "tie, bond, or link" (Latin 

Dictionary Cassell). The concept of copulas was first introduced in the mathematical and statistical 

context by Abe Sklar in 1959 in Sklar's theorem. Based on this theorem, a copula is a function that 

connects a multivariate distribution function with its marginal cumulative distribution functions. The 

idea of copulas had previously appeared in various articles without referring to them as copulas, e.g., 

Hoeffding [15][16]. 

There are three main approaches to copula construction as outlined by Czadzo [8], The first approach 

involves applying probability integral transformations to the marginal distributions of a known 

multivariate distribution. This approach is applied to elliptical distributions, resulting in the class of 

elliptical copulas, including Gaussian copulas and Student's t copulas. The second approach employs 

generator functions, resulting in the class of Archimedean copulas, which includes the Clayton, Gumbel, 

Frank, and Joe copula families. The third approach extends the univariate extreme value theory to higher 

dimensions, resulting in the class of extreme value copulas, including the Marshall–Olkin copula and 

the Hüsler–Reiss copula. 

The copulas from these three classes are less flexible in higher dimensions because they cannot define 

different tail dependencies for different variable pairs. Moreover, the limitation of Archimedean copulas 

lies in the fact that their dependence structure is determined by a single parameter, limiting their 

flexibility in modeling complex dependence structures [5]. Elliptical copulas have limitations in 

modeling asymmetric dependence [26].  Extreme value copulas can only model one type of tail 

dependence [2]. The vine copula model addresses these issues by combining bivariate copulas in a tree 

structure, allowing for the modeling of complex dependence structures. 

The vine copula model was initially proposed by Joe [21] and further developed in Bedford and 

Cooke [3][4]. The vine copula employs bivariate copulas to decompose multivariate distribution 

functions (with more than two variables). Bedford and Cooke introduced a hierarchical tree structure to 

organize the decomposition, naming the resulting graphical structure a "vine." In this tree structure, 

nodes represent marginal density functions and bivariate copulas, while edges represent bivariate 

copulas used to connect these nodes. 

The primary advantage of the vine copula model is that all involved copulas are bivariate, and they 

do not need to be identical for all variable pairs. Furthermore, each copula pair has its parameter to be 

estimated. In this study, the parameter estimation will be performed using the pseudo-maximum 

likelihood method. Pseudo-maximum likelihood is similar to the maximum likelihood method; it 

estimates parameters by maximizing the likelihood function of observed data. The difference lies in the 

data used to maximize the likelihood function. In pseudo-maximum likelihood, the marginal distribution 

is unknown. In vine copulas, sequential estimation is performed, estimating from the first tree to the last 

[8]. 

The vine copula model can be applied in various fields, such as the financial industry, environmental 

science, health, and technology. Nikoloulopoulos [35] evaluated the accuracy of diagnostic tests using 

a trivariate vine copula model for true positive (correctly diagnosed sick individuals), true negative 

(correctly diagnosed healthy individuals), and sick individuals. Hohndorf [18] analyzed relationships 

between variables emerging from operational flight data using marginal regression with vine copulas. 

Additionally, Ernhardt [12] used vine copulas to model various types of health insurance claims over 

multiple time periods. In this research, the construction of the vine copula model and its utilization in 

assessing the dependence pattern among various chemical elements in water samples will be outlined. 

Subsequently, model selection will be performed based on the Akaike information criterion. 
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2. Copula 

A copula is a multivariate distribution function defined within the [0, 1]𝑛 hypercube, where each 

variable follows a uniform distribution. In [24], according to Sklar's Theorem, let 𝐻 be an 𝑛-dimensional 

distribution function with marginal distributions 𝐹1, 𝐹2, … , 𝐹𝑛. Then, there exists an n-copula 𝐶 such that 

for all 𝑥 in 𝑅
𝑛

: 

𝐻(𝑥1, 𝑥2, … , 𝑥𝑛) = 𝐶(𝐹1(𝑥1), 𝐹2(𝑥2), … , 𝐹𝑛(𝑥𝑛)) (1)  

The probability density function of (1) is as follows: 
ℎ(𝑥1, 𝑥2, … , 𝑥𝑛) 

=
𝜕(𝑛)

𝜕𝑥1𝜕𝑥2…𝜕𝑥𝑛
𝐻(𝑥1, 𝑥2, … , 𝑥𝑛) 

 

 = 𝑐(𝐹1(𝑥1), 𝐹2(𝑥2), … , 𝐹𝑛(𝑥𝑛))𝑓𝑛(𝑥𝑛)𝑓𝑛−1(𝑥𝑛−1)… 𝑓1(𝑥1) (2)  

Let 𝐹1
−1, 𝐹2

−1, … , 𝐹𝑛
−1 be the inverses of 𝐹1, 𝐹2, … , 𝐹𝑛 respectively. Then, for every 𝑢 in 𝐼𝑛  

𝐶(𝑢1, 𝑢2, … , 𝑢𝑛) = 𝐻(𝐹1
−1(𝑢1), 𝐹2

−1(𝑢2), … , 𝐹𝑛
−1(𝑢𝑛)) (3)  

According to Czado [8], the copula density function can be obtained through partial differentiation, as 

follows 
𝑐(𝑢1, 𝑢2, … , 𝑢𝑛) 

 =
∂(𝑛)

∂𝑢1 ∂𝑢2…∂𝑢𝑛
𝐻(𝐹1

−1(𝑢1), 𝐹2
−1(𝑢2), … , 𝐹𝑛

−1(𝑢𝑛)) 
 

 
=

ℎ(𝐹−1(𝑢1), 𝐹
−1(𝑢2), … , 𝐹

−1(𝑢𝑛))

ℎ𝑛(𝐹
−1(𝑢𝑛))ℎ𝑛−1(𝐹

−1(𝑢𝑛−1)) …ℎ1(𝐹
−1(𝑢1))

 
(4)  

 

3. Tail Dependence 

According to Nelsen [24], the tail dependence measures the dependence between variables in the upper-

right and lower-left tails of a bivariate distribution. Let 𝑋1 and 𝑋2 be continuous random variables with 

distribution functions 𝐹1 and 𝐹2, respectively. The upper tail dependence parameter 𝜆𝑢𝑝𝑝𝑒𝑟 is defined as 

follows: 

𝜆𝑢𝑝𝑝𝑒𝑟 = lim
𝑡→1−

𝑃 (𝑋2 > 𝐹2
−1(𝑡)|𝑋1 > 𝐹1

−1(𝑡)) = lim
𝑡→1−

1 − 2𝑡 + 𝐶(𝑡, 𝑡)

1 − 𝑡
 

(5)  

The lower tail dependence parameter 𝜆𝑙𝑜𝑤𝑒𝑟 is defined as follows: 

𝜆𝑙𝑜𝑤𝑒𝑟 = lim
𝑡→0+

𝑃 (𝑋2 ≤ 𝐹2
−1(𝑡)|𝑋1 ≤ 𝐹1

−1(𝑡)) = lim
𝑡→0+

𝐶(𝑡, 𝑡)

𝑡
 

(6)  

4. Bivariate Copula Family 

In this research, a bivariate copula, also known as a two-dimensional copula, is the most commonly used 

copula in modeling the dependence between random variables. In this study, the Elliptical copula class 

is used, which includes the Gaussian copula and the Student's t copula, as well as the Archimedean 

copula class, which includes the Gumbel copula, the Clayton copula, and the Frank copula. 

4.1 Elliptical Copula 

Elliptical copulas are constructed from elliptical distributions using Sklar's theorem by applying 

probability integral transformations to each marginal distribution of the known multivariate elliptical 

distribution.  

4.1.1 Gaussian Copula. A bivariate Gaussian copula is obtained by using a bivariate normal distribution 

with a zero mean vector, unit variance, and correlation ρ. Applying the inverse of Sklar's theorem, the 

cumulative distribution function of (𝑈1, 𝑈2) is as follows 

𝐶(𝑢1, 𝑢2; ρ) = Φ2(Φ
−1(𝑢1), Φ

−1(𝑢2); ρ) (7)  
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where (𝑢1, 𝑢2) ∈ [0,1]
2, Φ(⋅) is the cumulative distribution function of the standard normal distribution 

𝑁(0,1) and Φ2(⋅,⋅; ρ) is the bivariate normal cumulative distribution function with a zero mean, unit 

variance, and correlation ρ [8]. The Gaussian copula has only one parameter ρ. As for the copula density 

function, it is as follows 

𝑐(𝑢1, 𝑢2, 𝜌) =
1

√1 − 𝜌2
exp {−

𝜌2(𝑥1
2 + 𝑥2

2) − 2𝜌𝑥1𝑥2
2(1 − 𝜌)

} (8)  

4.1.2 Student’s t Copula. The Student's t copula can be constructed using the Student's t distribution 

with degrees of freedom ν, a zero mean, and correlation ρ. Sklar's theorem yields its cumulative 

distribution function as follows 

𝐶(𝑢1, 𝑢2; 𝜈, 𝑅) = 𝑇𝜈,𝑅(𝑇𝜈
−1(𝑢1), 𝑇𝜈

−1(𝑢2)) (9)  

𝑇ν,𝑅 represents the cumulative distribution function of the standard bivariate Student's t distribution 

with ν > 0. 𝑇ν
−1 is the inverse of the cumulative distribution function 𝑇𝜈   which is the standard 

univariate cumulative distribution function of the Student's t distribution with degrees of freedom 𝜈 [8].  
The copula density function is as follows 

𝑐(𝑢1, 𝑢2; ν, 𝑅) =

1

2π√1 − ρ2
[1 +

1
ν(1 − ρ2)

(𝑥1 − 2ρ𝑥1𝑥2 + 𝑥2
2)]

−
ν+2
2

(
Γ(
𝑣 + 1
2

)

√π𝑣Γ (
𝑣
2
)
)

2

[(1 +
𝑥1
2

𝑣
) (1 +

𝑥2
2

𝑣
)]
−
𝑣+1
2

 
(10)  

4.2 Archimedean Copula 

Within this section, Archimedean copulas will be. The class of Archimedean copulas allows for various 

different dependence structures. An Archimedean copula is constructed from a generator function. Let 

ψ be a continuous function that is strictly decreasing from [0,1] to [0,∞] where ψ(1) = 0, and ψ[−1]  is 

the pseudo-inverse of ψ . Let 𝐶 be a function from [0,1]2 to [0,1] given by 

𝐶(𝑢1, 𝑢2) = ψ
[−1](ψ(𝑢1) + ψ(𝑢2)) (11)  

Then 𝐶 is a copula if and only if ψ is a convex function [11]. 

4.2.1 Gumbel Copula. The Gumbel Copula is characterized by a single parameter θ ≥ 1 . When θ = 1, 
the Gumbel Copula represents independence. As  θ → ∞, it indicates complete dependence. The Gumbel 

Copula has the following generator function: 

ψθ(𝑡) = (− ln 𝑡)
𝜃 (12)  

The cumulative distribution function of the Gumbel Copula is given by 

𝐶θ(𝑢1, 𝑢2) = exp (−((− ln 𝑢1)
θ + (− ln 𝑢2)

θ))

1
θ
 

[8] (13)  

The density function for the Gumbel Copula is as follows 

𝑐(𝑢1, 𝑢2) = 

𝐶𝜃(𝑢1, 𝑢2)
((− ln 𝑢1)(− ln 𝑢2))

θ−1

𝑢1𝑢2
 

(
(θ − 1)((− ln 𝑢1)

θ + (− ln 𝑢2)
θ)
1
θ
−2

+((− ln 𝑢1)
θ + (− ln 𝑢2)

θ)
2
θ
−2

) 

(14)  

4.2.2 Clayton Copula. The Clayton Copula has a single parameter θ > 0.  As θ → 0,  the Clayton 

Copula represents no dependence, and as θ → ∞ , it indicates complete dependence. The Clayton Copula 

has the following generator function 
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𝜓𝜃(𝑡) =
1

𝜃
(𝑡−𝜃 − 1) 

(15)  

The cumulative distribution function of the Clayton Copula is given by 

𝐶𝜃(𝑢1, 𝑢2) = (𝑢1
−𝜃 + 𝑢2

−𝜃 − 1)
−
1
𝜃 

[8] (16)  

The density function for the Clayton Copula is as follows 

𝑐(𝑢1, 𝑢2) = (θ + 1)(𝑢1𝑢2)
−θ−1(𝑢1

−θ + 𝑢2
−θ − 1)

−
1
θ
−2

 
(17)  

4.2.3 Frank Copula. The Frank Copula has a parameter θ ∈ [−∞,∞]\{0}. As θ → 0,  it represents 

independence. The Frank Copula has the following generator function 

𝜓𝜃(𝑡) = − ln (
𝑒−θ𝑡 − 1

𝑒−θ − 1
) 

(18)  

The cumulative distribution function of the Frank Copula is given by 

𝐶𝜃(𝑢1, 𝑢2) = −
1

θ
ln (1 +

(𝑒−θ𝑢1 − 1)(𝑒−θ𝑢2 − 1)

(𝑒−θ − 1)
) 

(19)  

𝐶𝜃(𝑢1, 𝑢2) = (𝑢1
−𝜃 + 𝑢2

−𝜃 − 1)
−
1
𝜃  

[8] (20)  

The cumulative distribution function of the Frank Copula is given by 

𝑐(𝑢1, 𝑢2) =
θ𝑒−θ(𝑢1+𝑢2)(𝑒−θ − 1)

(𝑒−θ(𝑢1+𝑢2) − 𝑒−θ𝑢1 − 𝑒−θ𝑢2 + 𝑒−θ)2
 

(21)  

5. Regular Vine Copula Model 

5.1. Within this section, an explanation of pair copula construction and a regular vine in three 

dimensions will be provided.Pair-Copula Construction (PCC) 

The Pair-Copula Construction (PCC) was initially proposed by Joe [21] and further developed by 

Bedford & Cooke [3][4]. The fundamental idea behind PCC is to construct higher-dimensional copulas 

through bivariate copulas, which provide a flexible class of dependence models. To illustrate the concept 

of Pair-Copula Construction, it is necessary to introduce the decomposition of pair copulas from the 

multivariate density function. Let 𝑋1, … , 𝑋𝑛 be random variables. The probability density function for 

the multivariate case can be expressed as a series of conditional univariate density functions. In the case 

of two variables, the joint density function can be expressed as 

𝑓(𝑥1, 𝑥2) = 𝑓(𝑥2|𝑥1)𝑓1(𝑥1) (22)  

For three variables, one of the forms is 

𝑓(𝑥3|𝑥1, 𝑥2) =
𝑓(𝑥1, 𝑥2, 𝑥3)

𝑓(𝑥1, 𝑥2)
 

(23)  

𝑓(𝑥1, 𝑥2, 𝑥3) = 𝑓(𝑥3|𝑥1, 𝑥2)𝑓(𝑥1, 𝑥2) (24)  

For four variables, one of the forms is 

𝑓(𝑥4|𝑥1, 𝑥2, 𝑥3) =
𝑓(𝑥1, 𝑥2, 𝑥3, 𝑥4)

𝑓(𝑥1, 𝑥2, 𝑥3)
 

(25)  

𝑓(𝑥1, 𝑥2, 𝑥3, 𝑥4) = 𝑓(𝑥4|𝑥1, 𝑥2, 𝑥3)𝑓(𝑥1, 𝑥2, 𝑥3) (26)  

This pattern continues, and for 𝑛 variables, one of the forms is 

𝑓(𝑥𝑛|𝑥1, … , 𝑥𝑛−1) =
𝑓(𝑥1, … , 𝑥𝑛)

𝑓(𝑥1, … 𝑥𝑛−1)
 

(27)  

𝑓(𝑥1, … , 𝑥𝑛) = 𝑓(𝑥𝑛|𝑥1, … , 𝑥𝑛−1)𝑓(𝑥1, … 𝑥𝑛−1) (28)  

Thus, one of the decomposition forms is as follows 
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𝑓(𝑥1, … , 𝑥𝑛) = 𝑓(𝑥𝑛|𝑥1, … , 𝑥𝑛−1)𝑓(𝑥𝑛−1|𝑥1, … , 𝑥𝑛−2)… 𝑓(𝑥2|𝑥1)𝑓(𝑥1) (29)  

where 𝑓(⋅ | ⋅) represents the conditional density function. 

Based on Sklar's theorem, the density function for the bivariate case can be expressed as follows 

𝑓(𝑥1, 𝑥2) = 𝑐1,2(𝐹1(𝑥1), 𝐹2(𝑥2))𝑓1(𝑥1)𝑓2(𝑥2) (30)  

Therefore, the conditional density function can be expressed as 

𝑓(𝑥2|𝑥1) = 𝑐1,2(𝐹1(𝑥1), 𝐹2(𝑥2))𝑓2(𝑥2) (31)  

For three random variables 𝑋1, 𝑋2, and 𝑋3, the conditional density function 𝑓(𝑥3|𝑥1, 𝑥2) can also be 

expressed as 

𝑓(𝑥3|𝑥1, 𝑥2) =
𝑓(𝑥1, 𝑥2, 𝑥3)

𝑓(𝑥1, 𝑥2)
=
𝑓(𝑥2, 𝑥3|𝑥1)𝑓1(𝑥1)

𝑓(𝑥2|𝑥1)𝑓1(𝑥1)
=
𝑓(𝑥2, 𝑥3|𝑥1)

𝑓(𝑥2|𝑥1)
 

(32)  

According to Sklar's theorem, the conditional density function 𝑓(𝑥2, 𝑥3|𝑥1) can also be written as 

follows 
𝑓(𝑥2, 𝑥3|𝑥1) = 𝑐2,3|1(𝐹(𝑥2|𝑥1), 𝐹(𝑥3|𝑥1)|𝑥1)𝑓(𝑥2|𝑥1)𝑓(𝑥3|𝑥1) (33)  

Therefore, it can be concluded that 

 𝑓(𝑥3|𝑥1, 𝑥2) = 𝑐2,3|1(𝐹(𝑥2|𝑥1), 𝐹(𝑥3|𝑥1)|𝑥1)𝑓(𝑥3|𝑥1) (34)  

 
= 𝑐2,3|1(𝐹(𝑥2|𝑥1), 𝐹(𝑥3|𝑥1)|𝑥1)𝑐1,3(𝐹1(𝑥1), 𝐹3(𝑥3))𝑓3(𝑥3) (35)  

Where 𝑓(𝑥3|𝑥1) = 𝑐1,3(𝐹1(𝑥1), 𝐹3(𝑥3))𝑓3(𝑥3).  

Each conditional density function in equation (29) can be decomposed into a product of the 

corresponding pair-copulas using a general formula 

𝑓(𝑥𝑖|ν) = 𝑐𝑥𝑖,𝑥𝑗|ν−𝑗(𝐹(𝑥𝑖|𝝂−𝒋), 𝐹(𝑥𝑗|𝝂−𝒋)|𝝂−𝒋)𝑓(𝑥𝑖|𝝂−𝒋) (36)  

for 𝑖, 𝑗 =  1, . . . , 𝑛, and 𝝂  represents any set of 𝑥1, … , 𝑥𝑛 where 𝑥𝑗 is in the set, but there is no 𝑥𝑖. Then, 

𝝂−𝒋 is an n-dimensional vector with the exclusion of the j-th component [1].  

Next, the construction of three-dimensional pair-copulas will be illustrated. For three random variables  

𝑋1, 𝑋2, and 𝑋3, the joint density function can be decomposed as follows 

𝑓(𝑥1, 𝑥2, 𝑥3) = 𝑓(𝑥3|𝑥1, 𝑥2)𝑓(𝑥2|𝑥1)𝑓1(𝑥1) (37)  

The conditional density function 𝑓(𝑥2|𝑥1) can be expressed as in equation (31). The conditional 

density function 𝑓(𝑥3|𝑥1, 𝑥2) can also be expressed as in equation (34). Then, by substituting equations 

(31) and (35) into equation (37), one obtains one form of the density function of the three-dimensional 

pair-copula decomposition 

𝑓(𝑥1, 𝑥2, 𝑥3) = 𝑐2,3|1(𝐹(𝑥2|𝑥1), 𝐹(𝑥3|𝑥1)|𝑥1)𝑐1,3(𝐹1(𝑥1), 𝐹3(𝑥3)) 

   𝑐1,2(𝐹1(𝑥1), 𝐹2(𝑥2))𝑓3(𝑥3)𝑓2(𝑥2)𝑓1(𝑥1) 

(38)  

This PCC decomposition is not unique because if different conditional variables are used in equations 

(31) and (35), it would result in different pair-copula constructions. Analogously, other decompositions 

of 𝑓(𝑥1, 𝑥2, 𝑥3) can be as follows 

𝑓(𝑥1, 𝑥2, 𝑥3) = 𝑐1,3|2(𝐹(𝑥1|𝑥2), 𝐹(𝑥3|𝑥2)|𝑥2)𝑐2,3(𝐹2(𝑥2), 𝐹3(𝑥3)) (39)  
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  𝑐1,2(𝐹1(𝑥1), 𝐹2(𝑥2))𝑓3(𝑥3)𝑓2(𝑥2)𝑓1(𝑥1) 

and 

𝑓(𝑥1, 𝑥2, 𝑥3) = 𝑐1,2|3(𝐹(𝑥1|𝑥3), 𝐹(𝑥2|𝑥3)|𝑥3)𝑐1,3(𝐹1(𝑥1), 𝐹3(𝑥3)) 

  𝑐2,3(𝐹2(𝑥2), 𝐹3(𝑥3))𝑓3(𝑥3)𝑓2(𝑥2)𝑓1(𝑥1) 
(40)  

Suppose there is a conditional copula 𝑐𝑖,𝑗|𝐷(⋅,⋅ |𝒙𝑫).  To simplify the estimation process, a 

simplifying assumption is used, where the conditioning variable 𝑥𝐷 is ignored. Therefore, it holds that 

𝑐𝑖,𝑗|𝐷(⋅,⋅ |𝒙𝑫) = 𝑐𝑖,𝑗|𝐷(⋅,⋅). Subsequently, the simplifying assumption applies to vine copulas [8]. 

5.2.  Regular Vine Copula 
In high dimensions, there are many possible constructions of pair-copulas. In 2001 and 2002, Bedford 

and Cooke [3][4] developed a graphical structure called a regular vine tree sequence to characterize and 

organize all factorizations. A set of trees 𝒱 = (𝑇1, … , 𝑇𝑑−1) is a regular vine tree sequence on d elements 

if: 

• Each tree 𝑇𝑗 = (𝑁𝑗 , 𝐸𝑗) is connected, where 𝑗 =  1, … , 𝑑 − 1. 

• 𝑇1 is a tree with node set 𝑁1 = {1,… , 𝑑} and edge set 𝐸1. 

• For 𝑗 ≥ 2, 𝑇𝑗 is a tree with node set 𝑁𝑗 = 𝐸𝑗−1 and edge set 𝐸𝑗 

• For 𝑗 =  2,… , 𝑑 − 1, for 𝑎, 𝑏 ∈ 𝑁𝑗−1 and {𝑎, 𝑏} ∈ 𝐸𝑗, it must hold that |𝑎 ∩ 𝑏| = 1 (proximity 

condition). 

As an example, here is a regular vine tree sequence for the construction of a three-dimensional pair-

copula, as discussed earlier. 

 

Figure 1. Vine Copula Structure in Three Dimension 

Regular vines have two subclasses: canonical vines and drawable vines. A regular vine tree sequence 

𝒱 = (𝑇1, … , 𝑇𝑑−1) is called a C-vine tree sequence if, for each tree 𝑇𝑖 , there exists a node 𝑛 ∈ 𝑁𝑖 such 

that |{𝑒 ∈ 𝐸𝑖|𝑛 ∈ 𝑒}|  =  𝑑 –  𝑖. This node is referred to as the root node of the tree 𝑇𝑖.  A regular vine 

tree sequence 𝑉 = (𝑇1, … , 𝑇𝑑−1) is called a D-vine tree sequence if, for every node 𝑛 ∈ 𝑁𝑖 , |{𝑒 ∈
𝐸𝑖|𝑛 ∈ 𝑒}|  ≤ 2. According to Czado [8], the density function of a regular vine copula is as follows 

𝑓(𝑥1, … , 𝑥𝑑) = [∏𝑓𝑘(𝑥𝑘)

𝑑

𝑘=1

] [∏∏ 𝑐𝑖,𝑗|𝐷 (𝐹𝑖|𝐷(𝑥𝑖|𝒙𝐷), 𝐹𝑖𝑗𝐷(𝑥𝑗|𝒙𝐷))

𝑒∈𝐸𝑘

𝑑−1

𝑘=1

] (41)  

 For canonical vine copulas, the density function is as follows 

𝑓(𝑥1, … , 𝑥𝑑) = [∏𝑓𝑘(𝑥𝑘)

𝑑

𝑘=1

] [∏∏𝑐𝑗,𝑗+𝑖|1,…,𝑗−1

𝑑−𝑗

𝑖=1

𝑑−1

𝑗=1

] (42)  

And for drawable vine copulas, the density function is as follows 
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𝑓(𝑥1, … , 𝑥𝑑) = [∏𝑓𝑘(𝑥𝑘)

𝑑

𝑘=1

] [∏∏𝑐𝑖,𝑖+𝑗|𝑖+1,…,𝑖+𝑗−1

𝑑−𝑗

𝑖=1

𝑑−1

𝑗=1

] (43)  

6. Pseudo-Maximum Likelihood 

Pseudo-Maximum Likelihood Method is used to estimate parameters of copula models when the 

marginal distribution functions of the data are unknown. This method is similar to Maximum Likelihood 

Estimation (MLE) and allows the estimation of copula parameters based on the likelihood function of 

its marginal distribution. The Pseudo-Maximum Likelihood method was introduced by Genest in 1995 

[8]. 

Let there be a random two-dimensional sample of size n, denoted as (𝑋1, 𝑋2, … , 𝑋𝑛), which are 

mutually independent and identically distributed, where 𝑋𝑗 = (𝑋1𝑗, 𝑋2𝑗) for 𝑗 = 1,… , 𝑛. Then, the n 

data vectors are transformed into pseudo-observations by calculating the empirical distribution function 

of each marginal, resulting in (𝐹1𝑛̂(𝑥1𝑗), 𝐹2𝑛̂(𝑥2𝑗)). 

In this method, copula parameters are estimated by maximizing the pseudo-likelihood function. 

According to Sklar's Theorem, for the case of two variables, it can be expressed as 𝐻(𝑥1, 𝑥2) =

𝐶(𝐹(𝑥1), 𝐹(𝑥2)). Let 𝐿(θ; 𝑥) be the pseudo-likelihood function, then the parameters will be estimated 

by maximizing the pseudo-likelihood function: 

θ̂ = argmax∑ln 𝑐

𝑛

𝑗=1

(𝐹1𝑛̂(𝑥1𝑗), 𝐹2𝑛̂(𝑥2𝑗); θ) (44)  

7. Sequential Estimation 

Within this section, the discussion will revolve around the sequential estimation of copula parameters 

within a vine tree sequence. This estimation involves a sequential order of parameter estimation, starting 

from the first tree, then the second tree, and so on until the last tree. 

Let there be copula parameters denoted as θ𝑒, where edge 𝑒 = (𝑎𝑒 , 𝑏𝑒|𝐷𝑒) is part of a regular vine 

tree sequence in tree 𝑇𝑖. The copula parameters for this edge are denoted as θ(𝑇𝑖), and their estimates 

are represented as θ̂(𝑇𝑖). Assume that all pair-copula parameters in trees from 𝑇1 to 𝑇𝑖−1 have already 

been estimated. The set of estimated parameters is denoted as θ̂(𝑇1,…,𝑖−1). 

The sequential estimation of 𝜽𝒆, for edge edge 𝑒 = (𝑎𝑒 , 𝑏𝑒|𝐷𝑒) in tree 𝑇𝑖 is based on pseudo-

observations. These pseudo-observations are defined as follows: 

𝑢𝑘,𝑎𝑒|𝐷𝑒,𝜽̂(𝑇1,…,𝑖−1) = 𝐶𝑎𝑒|𝐷𝑒 (𝑢𝑘,𝑎𝑒|𝒖𝑘,𝐷𝑒 , 𝜽̂(𝑇1,…,𝑖−1)) (45)  

𝑢𝑘,𝑏𝑒|𝐷𝑒,𝜽̂(𝑇1,…,𝑖−1) = 𝐶𝑏𝑒|𝐷𝑒 (𝑢𝑘,𝑏𝑒|𝒖𝑘,𝐷𝑒 , 𝜽̂(𝑇1,…,𝑖−1)) (46)  

where 𝑘 = 1,… , 𝑛. These pseudo-observations are used to estimate 𝜽𝒆. Utilizing these pseudo-

observations 𝜽𝒆, is estimated by seeking values that maximize the product of the copula function  

𝑐𝑎𝑒,𝑏𝑒|𝐷𝑒based on these pseudo-observations [8]. In essence, the objective is to identify the values of 𝜽𝒆 

that maximize the following expression 

∏𝑐𝑎𝑒,𝑏𝑒|𝐷𝑒(𝑢𝑘,𝑎𝑒|𝐷𝑒,𝜽̂(𝑇1,…,𝑖−1), 𝑢𝑘,𝑏𝑒|𝐷𝑒,𝜽̂(𝑇1,…,𝑖−1); 𝜽𝑒)

𝑛

𝑘=1

 (47)  

8. Akaike Information Criterion 

Akaike Information Criterion (AIC) is a method used to evaluate how well a statistical model fits a given 

dataset. AIC is commonly used for model selection and comparison by estimating the quality of each 

model relative to other models. AIC was developed by the Japanese statistician Hirotsugu Akaike. The 

AIC value is defined as: 

𝐴𝐼𝐶 = −2 ln 𝐿 (θ̂) + 2𝑘 (48)  
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Where 𝜃 is the set of model parameters, 𝐿(𝜃) is the maximum likelihood estimation of 𝜃 , and 𝑘 is the 

number of estimated parameters. The best model is the one with the lowest AIC value [13]. 

9. Empirical Study 

This section explains the application of the vine copula model by describing the utilized dataset. The 

process begins by first transforming the data and then selecting copula families and estimating 

parameters for the edge of the first tree in each model. Pseudo-observations are then formed to estimate 

parameters for the edge of the second tree, followed by the selection of copula families and parameter 

estimation for the second tree. After that, model selection is performed. 

9.1. Data Description 

The application of the vine copula model using uranium exploration data obtained from a study 

conducted by Cook and Johnson in 1986. The dataset consists of information about the logarithm 

concentrations of chemical elements in 655 water samples collected around Grand Junction, Colorado. 

Caesium, Scandium, and Titanium elements will be analyzed in this study using the vine copula model. 

The dataset involves the concentrations of multiple chemical elements and environmental data often 

exhibit complex dependencies due to geological, hydrological, or ecological factors. Vine copulas are 

well-suited for modeling the joint distribution of multiple variables and useful when there is a need to 

capture complex dependence structures between variables. 

9.2. Data Transformation to Pseudo-Observations 

Data will be transformed into pseudo-observations. The empirical probability integral transform is 

employed for this purpose. This transformation ranks each data point and utilizes the empirical 

distribution function on the transformed rank data, mathematically expressed as uij =
rij

n+1
=

rij

656
 

for each element in each vector xi = (xi1, … , xid), where uij is the pseudo-observation, rij is the data 

rank, and 𝑛 is the data count. This transformation results in uniformly distributed values between 0 and 

1. 

9.3. Fitting Model and Parameter Estimation 

Within this section, model fitting and the estimation of parameters will be executed for the dependency 

structure contained within the vine copula. In this case, there are three variables that need to be modeled, 

resulting in three possible vine copula structures, as shown in Figure 1. For simplicity, the vine copula 

structures in Figure 1 (a), (b), and (c) will be referred to as models 1, 2, and 3, respectively. 

The search for the most appropriate bivariate copula and the determination of the respective 

parameters for each pair copula within all potential dependency structures will be conducted. Figure 2 

provides a visual overview of the relationship between the variables to be modeled. 

 

Figure 2. Contour Plot, 

Histogram, and Scatter Plot of 

Pseudo-Observation 
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The selection of the best copula family for 𝑐1,2, 𝑐1,3, 𝑎𝑛𝑑 𝑐2,3will be done using the Akaike Information 

Criterion (AIC). The results are as follows: 

Table 1. AIC for Each Copula Family for 𝑐1,2, 𝑐1,3, 𝑎𝑛𝑑 𝑐2,3 

Copula family AIC c1,2 AIC 𝑐1,3 AIC 𝑐2,3 

Gaussian -77 -143 -295 

Student’s t -114 -170 -315 

Clayton -100 -71 -238 

Gumbel -65 -186 -286 

Frank -74 -140 -298 

From the table above, for 𝑐1,2, the smallest AIC value is shown by the Student's t copula family. 

Then, for 𝑐1,3, the smallest AIC value is indicated by the Gumbel copula family, and for 𝑐2,3, the smallest 

AIC value is shown by the Student's t copula family. After selecting the copula families, the next step 

is to estimate the parameters for each copula. Parameter estimation will be performed using the 

sequential method and pseudo-maximum likelihood method. Parameter estimation will be carried out 

for the first set of copulas in each model's structure, followed by parameter estimation for the second set 

of copulas by creating pseudo-observations using the estimated parameters from the first set. Using the 

pseudo-maximum likelihood method, the parameter estimates are as follows: 

θ̂1,2 = (0.34,3.48) 

θ1,3̂ = 1.5 
θ̂2,3 = (0.62,5.93) 

In the following steps, the copula family for the second set of copulas will be determined. In Model 

1, pseudo-observations u1|2 = 𝑐(𝑢1|𝑢2; 𝜽̂1,2) and u3|2 = 𝑐(𝑢3|𝑢2; 𝜽̂𝟐,𝟑) are generated to estimate the 

parameters of c1,3|2 = (𝑢1|2, 𝑢3|2; 𝜽1,3|2). Similar steps are applied for Models 2 and 3. Visual overview 

of the contour plots for 𝑐1,3|2, 𝑐1,2|3and 𝑐2,3|1 is presented in Figure 3. 

 

Figure 3. Contour Plots for Conditional Copulas (Left: 𝑢1|2 and 𝑢3|2, Middle: 𝑢1|3 and 

𝑢2|3, Right: 𝑢2|1 and 𝑢3|1) 

To objectively select the copula family, the Akaike Information Criterion (AIC) is used, and the results 

are shown in Table 2: 

Table 2. AIC for Each Copula Family for 𝑐1,3|2, 𝑐1,2|3and 𝑐2,3|1 

Copula Family AIC 𝑐1,3|2 AIC 𝑐1,2|3 AIC 𝑐2,3|1 

Gaussian -81 -1.46 -212 

Student’s t -83 -14.43 -230 

Clayton -26 -15.64 -70 

Gumbel -91 -1.75 -234 

Frank -69 -1.42 -210 

From the table above, the copula family with the smallest AIC value was selected. For 𝑐1,3|2, the 

Gumbel copula family was chosen. Then, for 𝑐1,2|3and 𝑐2,3|1, the Student's t copula family was selected. 
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After determining the copula families, the next step is to estimate the parameters of each copula using 

the pseudo-maximum likelihood method. Subsequently, the tail dependency parameters of the copulas 

with Gumbel and Student's t copula families will be calculated. All the obtained parameters for each 

model are presented in the following table. 

Table 3. Model Fitting and Parameter Estimation Results 

Pair Copula Copula 

Family 

Parameter 1 Parameter 2 Upper Tail 

Dependence 

Lower Tail 

Dependence 

AIC 

   Model 1    

(Cs, Sc) Student’s t 0.34 3.48 0.21 0.21  

(Sc, Ti) Student’s t 0.62 5.93 0.25 0.25 -532 

(Cs, Ti|Sc) Gumbel 1.30 0.00 0.29 -  

   Model 2    

(Cs, Ti) Gumbel 1.46 0.00 0.39 -  

(Sc, Ti) Student’s t 0.62 5.93 0.25 0.25 -515 

(Cs, Sc|Ti) Student’s t 0.08 6.85 0.03 0.03  

   Model 3    

(Cs, Sc) Student’s t 0.34 3.48 0.21 0.21  

(Cs, Ti) Gumbel 1.46 0.00 0.39 - -529 

(Sc, Ti|Cs) Student’s t 0.55 6.06 0.20 0.20  

The table above summarizes the results of model fitting and parameter estimation for the three models. 

As for the model structure, Model 1 exhibited the lowest AIC value. Therefore, Model 1 was selected 

as the best model. The vine copula model for the dependencies between Caesium, Scandium, and 

Titanium is as follows: 

𝑓(𝑥1, 𝑥2, 𝑥3) =

(

 
((− 𝑙𝑛 𝐹 (𝑥1|𝑥2))(− 𝑙𝑛 𝐹 (𝑥3|𝑥2)))

0,3

𝐹(𝑥1|𝑥2)𝐹(𝑥3|𝑥2)
𝑒𝑥𝑝 (−((− 𝑙𝑛 𝐹 (𝑥1|𝑥2))

1,3

+ (− 𝑙𝑛 𝐹 (𝑥3|𝑥2))
1,3
))
0,769231

((0,3) ((− 𝑙𝑛 𝐹 (𝑥1|𝑥2))
1,3

+ (− 𝑙𝑛 𝐹 (𝑥3|𝑥2))
1,3
)
−1,230769

+ ((− 𝑙𝑛 𝐹 (𝑥1|𝑥2))
1,3
+ (− 𝑙𝑛 𝐹 (𝑥3|𝑥2))

1,3
)
−0,461538

)

)

  

            

(

 
 0,202848[1 + 0,273934(𝑥2 − 1,24𝑥2𝑥3 + 𝑥3

2)]−3,965

0,146342 [(1 +
𝑥2
2

5,93
) (1 +

𝑥3
2

5,93
)]

−3,465

)

 
 

 

                                             

(

 
 0,169237[1 + 0,324917(𝑥1 − 0,68𝑥1𝑥2 + 𝑥2

2)]−2,74

0,138105 [(1 +
𝑥1
2

3,48) (1 +
𝑥2
2

3,48)]
−2,24

)

 
 

 𝑓1(𝑥1)𝑓2(𝑥2)𝑓3(𝑥3) 

Model 1 suggests that there is a dependence relationship between Caesium and Titanium with 

Scandium as a conditional variable. The dependence between Caesium and Scandium is modeled using 

the Student's t copula, indicating that there is dependence when both values are very large or very small. 

The dependence parameter between these two elements is relatively low at 0.34, indicating that their 

dependence is not very strong. The Student's t copula used in this model has a degree of freedom of 
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3.48. The upper and lower tail dependence in this model is not too strong, with upper and lower tail 

dependence parameters of 0.21. 

Additionally, the dependence relationship between Scandium and Titanium is also modeled using 

the Student's t copula. This suggests that there is dependence between these two elements when their 

values are very large or very small. The dependence between these two elements is quite significant, 

with a dependence parameter of 0.62. The degree of freedom for this model is 5.93, which is higher than 

the Student's t copula for Caesium and Scandium. This results in relatively weak tail dependence, despite 

having a relatively large dependence parameter of 0.25. 

Furthermore, the dependence relationship between Caesium and Titanium in the presence of 

Scandium is modeled using the Gumbel copula with a parameter of 1.30. This indicates that the level of 

dependence between them tends to be low because the parameter approaches 1. In this model, there is 

dependence when the values of both elements are very large, with an upper tail dependence parameter 

of 0.29. Although this dependence is relatively weak, it is stronger than the tail dependence of other 

pair-copulas. 

Among these three dependencies, Scandium and Titanium exhibit the highest dependence. From a 

chemical perspective, these two elements are not directly related and do not interact with each other in 

water. Generally, regions with high scandium concentrations tend to also have high titanium 

concentrations due to both elements being commonly found together in the same ore deposits [7]. The 

concentration of caesium, titanium, and scandium in water can have diverse and significant effects on 

the environment. Scandium, for instance, has the potential to gradually accumulate in soils and water, 

posing risks to both human and animal health, particularly when released into the environment by 

various industries. Titanium, on the other hand, exhibits remarkable resistance to corrosion by seawater, 

making it a valuable material for an array of ocean-related applications, such as propeller shafts, rigging, 

and desalination plants. Caesium, in contrast, is known for its explosive reaction with water, which can 

lead to ignition and violent explosions, presenting clear safety hazards [22].  

10. Conclusion 

The construction of pair-copulas can be carried out through the decomposition of conditional probability 

density functions and substituting copula density functions into the resulting decomposition. Thus, a 

multivariate density function can be formed, consisting of bivariate copula density functions. 

Subsequently, this probability density function can be organized by a graphical structure called a "vine." 

This graphical structure consists of a set of trees. 

In this research, parameters were estimated using the pseudo-maximum likelihood method and 

sequential estimation. The pseudo-maximum likelihood method is similar to the maximum likelihood 

method, but the marginal distribution is unknown. Therefore, data is transformed into pseudo-

observations, and then parameters that maximize its likelihood function are sought. Estimation in the 

vine copula is done sequentially, starting from the first tree, using parameters from the first tree to create 

pseudo-observations used to estimate the next tree, and so on until the last tree is reached. 

The application of vine copulas in this research used empirical data with unknown marginal 

distributions. Therefore, data transformation into pseudo-observations was performed. For each possible 

vine structure, copula families were selected using the Akaike information criteria. Then, parameter 

estimation was carried out using sequential estimation and pseudo-maximum likelihood for all bivariate 

copulas. After that, the best vine structure that can model data dependency based on the Akaike 

information criteria was selected. The results showed that Caesium and Titanium have a dependency 

relationship on Scandium. The dependence between Scandium and Titanium is the strongest compared 

to other variable pairs. 

These findings emphasize the need for comprehensive monitoring and regulation of these chemical 

elements in water sources to safeguard both environmental and human well-being. By recognizing the 

statistical associations between these elements, authorities can pinpoint potential sources of 

contamination or natural geological factors impacting water composition. Moreover, the correlation 

between high scandium and titanium concentrations, attributed to their common presence in the same 
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ore deposits, underscores the significance of responsible resource management. This insight can inform 

resource extraction and environmental protection policies in areas rich in these minerals. Consequently, 

policymakers and environmental agencies can make informed decisions using data analysis, particularly 

in cases where regulations or interventions are required to safeguard water quality and mitigate the 

consequences of mining and industrial activities. 

For further research, in higher dimensions, manually searching for an appropriate vine copula 

structure and family can become highly challenging and time-consuming. Therefore, it may be worth 

considering the use of Dißmann's algorithm for a more efficient model fitting of vine copulas. 
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