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Abstract. The air quality in the Jakarta area is examined in this study using artificial intelligence 

(AI) to assist a semi-supervised learning technique. The clustering approach is used in this article 

to separate air pollution into three main categories moderate, low, and high levels. This clustering 

helps identify shared characteristics among measures like particulates (PM10 and PM2.5), sulfur 

dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO), and ozone (O3), even when air 

quality labels are not always accessible. Using the Random Forest method, the air quality will 

be categorized in this experiment with an accuracy rate of 93%. Additionally, the results of 

variable significance analysis are examined on this article to identify the variables with the 

biggest effects on air quality, notably PM10, SO2, and NO2. This study demonstrates the 

enormous potential of applying machine learning techniques, particularly semi-supervised 

learning approaches, to assist sustainable environmental regulations while also monitoring and 

enhancing Jakarta's air quality. We describe the experimental procedures, the findings, and the 

implications of our research for comprehending and addressing urban air pollution in this article. 

1. Introduction 

Deteriorating air quality has become one of the most significant environmental issues in major cities, 

including Jakarta, Indonesia's capital city. Rapid population growth, the inevitability of urbanization, 

and high mobility have resulted in increased emissions of dangerous air pollutants such as PM2.5 

particles, NO2, SO2, and O3 [1]–[3]. This air pollution has a negative influence on human health, the 

environment, and the economy of the city [4]. A previous study in this area attempted to analyze Jakarta's 

air pollution using several methodologies [5]–[8]. However, there is still a knowledge vacuum that must 

be filled to have a better understanding of the patterns and causes that drive air pollution in increasingly 

complex metropolitan contexts. Seeing the need for a deeper understanding, this study provides a novel 

technique for assessing air pollution in Jakarta by employing artificial intelligence (AI) technology, 

specifically semi-supervised machine learning methods.  

As a result, this study will investigate the problem of air pollution in Jakarta in depth utilizing AI 

methodology and semi-supervised learning methods. AI models can use labeling data intelligently 

thanks to semi-supervised learning approaches [9]–[11]. Data from the previous iteration's labeling by 

the model can be utilized to train the model in the next iteration [12]–[14]. As a result, the model can 

learn from its prediction results and gradually increase its capacity to accurately diagnose air pollution. 

The application of the semi-supervised learning method to air pollution analysis is innovative in this 
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study. This method is likely to produce more precise and detailed results for determining Jakarta's air 

pollution trends.  

The aim of this study is to create a model that can properly and efficiently assess air pollution data 

and provide a greater understanding of air pollution patterns in Jakarta. This research intends to provide 

a solution to Jakarta's air pollution problems by combining AI technology and semi-supervised learning 

approaches. The findings of this study are expected to be valuable to policymakers in establishing more 

effective and sustainable air pollution management programs. Furthermore, the application of AI 

technology to address environmental challenges is an excellent example of how innovation may be 

leveraged to more intelligently respond to global issues. 

2. Related Work 

Several studies on air pollution employing a machine learning approach are pertinent to this subject. 

Kaya et all, for example, used short-term memory (LSTM) machine learning to predict air quality in 

Jakarta during the COVID-19 outbreak. They believed that the large-scale social restrictions (PSBB) 

imposed during the epidemic resulted in a significant reduction in Jakarta's air pollution. The root mean 

square error (RMSE) is utilized to evaluate the LSTM model in this study, and the results suggest that 

the Adam optimizer can bring the prediction results closer to the dataset used [15]. In addition, Marviola 

Hardini and colleagues proposed the use of convolutional neural networks (CNN) and image-based 

machine learning to estimate air quality. They took feature information from landscape photographs to 

evaluate air quality levels. Data from a network of air quality sensors throughout the city is used in this 

study. The results show that this approach can provide accurate predictions of air quality compared to 

traditional methods [16]. Furthermore, research by Wan Yun Hong and his team focuses on the statistical 

analysis and prediction of air pollution in Labuan, Malaysia. They used exponential triple smoothing 

(ETS) and seasonal autoregressive integrated moving average (SARIMA) forecasting methods to 

analyze and predict various air pollutants and the air pollution index (API). These models are used for 

various air pollutants such as PM10, CO, SO2, NO2, and O3. The results show that the ETS and 

SARIMA models can provide accurate estimates of air pollutant concentrations in Labuan [17]. 

Andri and his colleagues' study, on the other hand, highlight the importance of coping with missing 

data and class imbalances in data analysis and machine learning. They suggested and tested a 

preprocessing approach that incorporates Multiple Imputation by Chained Equations (MICE) and 

Synthetic Minority Oversampling Technique (SMOTE), as well as three machine learning algorithms, 

including Random Forest, Support Vector Machine, and K-Nearest Neighbour. The results show that 

the g-mean measure is getting better at dealing with class imbalance and missing values in air pollution 

datasets [18]. Finally, Suhartono et all created a hybrid model that predicts PM10 in Surabaya, Indonesia, 

by combining Time Series Regression (TSR) as a statistical method and Feedforward Neural Network 

(FFNN) or Long Short-Term Memory (LSTM) as machine learning. This study illustrates the 

differences between these models and demonstrates that PM10 in Surabaya has a nonlinear pattern. This 

demonstrates that combining TSR and FFNN or LSTM can produce better predicts than standalone 

models[19]. The primary difference in this study is that it focuses on monitoring and assessing air quality 

in Jakarta areas using a semi-supervised learning approach that allows categorizing air pollution data 

into groups based on similarities. This is a significant contribution to monitoring and improving Jakarta's 

air quality, and it demonstrates the enormous potential of employing machine learning approaches to 

support long-term environmental strategies. 

3. Materials and Methodology 

The main aim of this study is to analyze Jakarta's air pollution data using Open Data Jakarta information 

for the year 2021. This dataset contains 1517 data points gathered from five air quality monitoring 

stations (SPKU) in the DKI Jakarta Province. Six major variables are employed as features in this 

analysis: 

a. Particulates (PM10 and PM2.5): PM10 particulates are tiny particles with a diameter of fewer 

than 10 micrometers, while PM2.5 particulates have a diameter of fewer than 2.5 micrometers. 
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These particulates can come from a variety of sources, including burning fuel, road dust, industry, 

and other pollution. They can harm human health since they can be breathed and enter the lungs. 

b. Carbon Monoxide (CO): Carbon monoxide is a poisonous gas created by the combustion of fossil 

fuels such as petrol, oil, and natural gas. High CO exposure can impair the ability of the blood to 

carry oxygen, which can have a severe influence on human health. 

c. Sulfur Dioxide (SO2): Sulphur dioxide is a gas that is created when sulfur-containing fuels, such 

as coal and oil, are burned. SO2 can irritate the eyes, nose, and throat, as well as contribute to 

respiratory difficulties. 

d. Nitrogen Dioxide (NO2): Nitrogen dioxide is a gas created by the combustion of gasoline in 

automobiles and power plants. NO2 exposure can harm the human respiratory tract and aggravate 

chronic respiratory illnesses. 

e. Ozone (O3): Ozone is a gas that forms a protective layer in the atmosphere, but it can be air 

pollution at the Earth's surface. Surface ozone is a component of air pollution that can irritate the 

respiratory system and have negative health effects on humans and the environment. 

Figure 1 depicts the overall structure of this study approach. Data preprocessing was done in the 

early stages of this research, which included data normalization to offset discrepancies in variable scales 

and screening for missing data [20], [21]. Outliers are also discovered and handled to ensure data 

integrity[20], [22]. In this study, semi-supervised learning is used from unlabeled data (Step 1). The data 

is separated into two sections: training data and pseudo-labelling data. The data will be divided into 

multiple clusters based on feature similarity using the clustering technique. The K-Medoids approach 

applies a semi-supervised learning strategy during the clustering stage. The semi-supervised learning 

method allows us to recognize patterns and structures that traditional grouping methods cannot. The 

silhouette score approach is used to estimate the optimal number of clusters [23]. The K-Medoids 

technique, which was used in this study, is a clustering algorithm that identifies more stable cluster 

centers based on actual data points in the cluster and is less sensitive to outliers or extreme data points 

[24], [25]. 

 

Figure 1. Semi-supervised learning research framework for Jakarta air pollution 

Step 2 involves training the model using the Random Forest technique, with the cluster outputs acting 

as labels (targets). The pseudo-labeling strategy is used to predict labels on the pseudo-dataset based on 

the outcomes of the trained model constructed using the Random Forest method (Step 2)[26]. Pseudo-

labelling (or pseudo-supervised learning) is a machine learning strategy that uses unlabeled or less 

reliable labels to increase model performance [27]. Clustered data with labels and pseudo-label data are 

integrated into one data frame. The Random Forest model is then changed using a combination of data, 

specifically data with labels (cluster discoveries in stage 1) and data with pseudo-labels (in stage 2). 

This is done in Step 3 to allow the model to learn on data with pseudo-labels. This study's classification 

model was developed utilizing the semi-supervised learning principle, which employs data clustering to 

uncover cluster features and improve classification performance. The model evaluation stage is carried 

out after the classification model has been trained to measure the model's performance in classifying air 

quality[28]. This assessment includes parameters such as accuracy, recall, and F1-score[29]. To confirm 

the model's reliability, it is also validated using the cross-validation approach. Furthermore, the results 

of the data clustering analysis are used to understand the features of each cluster. This provides a more 

in-depth understanding of the degree of air pollution in various areas in Jakarta. This research's final 
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results include a better understanding of Jakarta's air quality, the contribution of semi-supervised 

learning methods with artificial intelligence support, and the potential use of analysis results to improve 

air quality and more sustainable environmental policies. 

In this study, we address a typical problem in the field of artificial intelligence: the constraints of 

labeled data. The use of the semi-supervised learning idea in this study has a solid foundation. Fully 

labeled data is sometimes limited, especially in the context of air quality study, and requires a large 

effort to obtain and analyze. As a result, we opted to use increasingly plentiful but unlabeled data as a 

valuable resource. We may use the semi-supervised learning approach to efficiently use current data, 

even unlabeled data, to develop models that can deliver more accurate results in predicting air pollution 

levels depending on certain factors. In this sense, we understand the tremendous potential for using 

unlabeled data to increase the accuracy and relevance of our study findings. This approach allows us to 

create higher-quality and more relevant information in air quality analysis, which can help society and 

stakeholders concerned about environmental issues. 

4. Result and Discussion 

4.1. The Cluster Algorithm's Experimental Results  

Semi-supervised learning is a machine learning approach in which models are trained to utilize both 

labelled and unlabelled data[12]. In the context of air pollution data clustering, the initial step is to cluster 

data and group data into groups with comparable characteristics. The silhouette approach is one 

technique for determining the ideal number of clusters[23], [30]. 

 

Figure 2. Silhouette Score for Optimal Number of Clusters 

The silhouette technique (or silhouette score) is an evaluation metric used to determine how similar 

each data point in one cluster is to data points in other clusters in a data cluster [23]. This method is used 

in clustering to identify the appropriate number of clusters. The silhouette score, which runs from -1 to 

1, is the result of this procedure. A good score shows that entities in one cluster share comparable traits 

and are well separated from entities in other clusters, whereas a negative score suggests the inverse. 

Based on the experimental data, this study generated a graph (Figure 2) displaying the silhouette values 

for various cluster counts. The findings of this experiment reveal that the number of clusters with the 

maximum silhouette value is three. In other words, air pollution data is best classified into three groups 

based on similarities. This optimal number of clusters serves as the foundation for the following steps 

in this investigation. In the context of this research, clustering experiments use the k-medoid method 

[25]. K-medoids is a clustering approach similar to K-means but with a significant change in the 

selection of cluster centres[31]. K-medoids select the cluster centre as the arithmetic average of all data 

points in the cluster, whereas K-means selects the cluster centre as the medoids or representative of the 

cluster [24]. K-medoids are employed in this study to organize air pollution data into clusters with 

comparable features, assisting in the first understanding of the patterns that exist in the data. According 
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to the findings of this study, the best number of clusters for air pollution data is three. Cluster 

composition describes the amount of people in each group. 

 

Figure 3. The composition of the members of 

each cluster as a result of the k-medoids 

clustering algorithm 

The study results (Figure 3) demonstrate that Cluster 0 has 365 members, Cluster 1 has 530 members, 

and Cluster 2 has 622 members. For this study, the next phase in data analysis is cluster profiling. Based 

on the characteristics of air pollution data, this study identified three distinct clusters. The researcher 

will next delve deeper into each cluster, attempting to comprehend the distinct characteristics of each 

group. The distinctive qualities of each group are used to give cluster names based on available data. 

Table 1 depicts the characteristics of each cluster based on pollution chemicals. 

Table 1. Characteristics of each cluster resulting from the k-medoids clustering algorithm 

pm10 pm25 so2 co o3 no2 Cluster 

38.292 56.942 29.906 9.092 27.451 13.687 Low Pollution 

56.847 83.912 27.181 16.008 25.088 31.474 Moderate Pollution 

62.970 93.056 45.687 11.916 38.318 19.679 High Pollution 

Clustering analysis using an unsupervised learning method based on k-medoids is used to identify 

air pollution categories based on data similarities that are not always obvious or easy to interpret when 

looking at raw data. This approach enables objective data grouping based on similar air pollution 

parameters. Identifying groups according to characteristics such as "Low Pollution,", " Moderate 

Pollution," and "High Pollution" is a good approach because it provides a clearer and more 

understandable understanding for those without a strong scientific background, while also reflecting 

relevant information about the level of air pollution in each group. 

Moderate Pollution: This cluster is named "Moderate Pollution" because its degree of air pollution 

is in the center of the other two. We detect moderate amounts of PM10 and PM2.5 within this cluster, 

indicating the presence of solid contaminants in the air. The amounts of SO2, CO, O3, and NO2 are also 

not too high or low. As a result, we consider it to be of moderate contamination. 

Low Pollution: The second cluster is designated as "Low Pollution" due to its low amount of air 

pollution. There is clear evidence that PM10, PM2.5, SO2, and CO levels are lower in this cluster than 

in others. This means that solid and gaseous pollution levels in the air are fairly low. As a result, we 

consider it to have a low degree of air pollution. 
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High Pollution: The third cluster is designated as "High Pollution" due to significant levels of air 

pollution. This cluster has elevated levels of PM10, PM2.5, SO2, CO, O3, and NO2. This shows that 

there are a lot of solid and gaseous contaminants in the air, which means there's a lot of pollution. 

Aside from that, the semi-supervised learning concept proposed in this paper is a critical strategy 

with the potential to yield significant advances. An efficient technique to use existing data is to start 

with unlabeled data and label it with clustering results. Clustering data will be used as labels in the 

development of a supervised learning model with cluster naming as the target label. The constructed 

model is used to predict pseudo-labels on labeled data. Based on the clustering results, this will aid in 

the construction of models that can forecast or categorize new data into appropriate groupings. 

4.2. The Classification Algorithm's Experimental Results  

The labels generated by clustering are critical in the next stage, which is air quality classification. Based 

on the cluster labels, the data is divided into three groups. This stage is critical because it enables the 

development of a more precise categorization model that takes into consideration the unique 

characteristics of each location. The machine learning model is trained in the classification stage 

utilizing training data that already includes cluster labels as targets. This is a semi-supervised strategy 

in which some data has labels while others do not. This classification machine will learn patterns in the 

data, including actual levels of air pollution, and will subsequently be able to predict future data. This 

study used a classification system known as Random Forest to carry out the air quality predict step in 

various regions of Jakarta. Random forest is an extremely effective machine learning algorithm that can 

handle a variety of categorization obstacles [32]. Random Forest employs several randomly generated 

decision trees [33]. Each of these trees is a model that learns from training data and can predict air 

quality based on the properties it has discovered. The Random Forest's key advantage is its ability to 

avoid overfitting, which occurs when the model "memorizes" the training data and cannot generalize 

successfully to new data[34], [35].  

The first stage of this research is hyperparameter tuning to optimize the performance of the Random 

Forest model[36]. This stage is critical because ideal hyperparameters enable the model to make accurate 

predictions. This study creates a parameter grid that accepts multiple values for the four primary 

hyperparameters in the Random Forest model. These combinations will be investigated in the search for 

hyperparameters, which will also include n estimators or the number of decision trees in the model. The 

researchers experimented with values of 100, 200, and 300[37]. The following parameter is max_depth, 

which is the maximum depth of each decision tree with alternatives such as 0, 10, and 20 [38]. 

Min_samples_split is the smallest number of samples required to divide the tree's nodes[39]. The values 

under consideration are 2, 5, and 10. Finally, the min_samples_leaf parameter specifies the minimum 

amounts of samples necessary in each tree leaf[40]. There are three possible combinations: 1, 2, and 4. 

GridSearchCV will then attempt all possible hyperparameter combinations from the provided grid[41], 

[42]. The hyperparameter search yields hyperparameter combinations with the highest accuracy score. 

The researcher in this example has determined the ten greatest choices based on the highest accuracy 

ratings. 

Table 2. The results of the hyperparameter combination experiment 

Experiment max_depth min_samples_leaf min_samples_split n_estimators Accuracy 

31a 10 1 5 200 0.917624 

34 10 1 10 200 0.916973 

41 10 2 5 300 0.916966 

29 10 1 2 300 0.916966 

4 0 1 5 200 0.916964 

58 20 1 5 200 0.916964 

32 10 1 5 300 0.916308 

42 10 2 10 100 0.916304 

3 0 1 5 100 0.916304 

57 20 1 5 100 0.916304 
a Experiment with best performance 
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Table 2 displays the experimental findings of numerous hyperparameter combinations that were 

evaluated, as well as the accuracy gained for each combination. The first hyperparameter combination, 

which is the result of the 31st experiment in the list of experimental results, has the maximum accuracy 

of 0.9176 with a max depth of 10, min samples of leaf 1, min samples of split 5, and n_estimators of 

200. As a result, this hyperparameter combination was selected as the best and will be used to train an 

air quality classification model in Jakarta cities. An air quality classification model will be trained using 

the set of hyperparameters that was determined to be the best one in Jakarta. Additionally, the 5-fold 

technique and cross-validation will be used to test this model[43]. Five distinct subsets of the data will 

be used in this cross-validation process. The other four subsets will be utilized as training data, and each 

subset will be used as testing data alternatively. Five repetitions will be needed to complete this process, 

resulting in five separate subsets of test results. The accuracy outcomes from each iteration will be used 

to gauge how well and consistently the trained model can generate predictions. 

Table 3. Results of the cross-validation process using the K-fold method 

Fold Accuracy 

Fold 1 0.9275 

Fold 2 0.9126 

Fold 3 0.9176 

Fold 4 0.9152 

Fold 5 0.9086 

 

The outcome of the 5-fold cross-validation process is shown in Table 3. These findings show that 

the trained classification algorithm consistently predicts air quality in Jakarta areas. The average 

precision of these five folds is approximately 91.63%, demonstrating the model's effectiveness in 

categorising air quality. The fold with the highest accuracy, according to the findings of cross-validation 

with five folds, is "Fold 1," with a precision of 0.9275. As a result, "Fold 1" was determined to be the 

best fold and will be assessed using test data. The model that was developed using "Fold 1" will be 

regarded as the ultimate model that will be applied to predict air quality during testing. 

 

Figure 4. Confusion matrix of model prediction 

results using the random forest algorithm 
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The confusion matrix in Figure 4 is used to evaluate the classification model's performance on test 

data. This confusion matrix is divided into three categories or labels: "moderate pollution," "low 

pollution," and "high pollution." The model correctly predicted 69 of the 69 samples in the "Moderate 

Pollution" category. This demonstrates that the model can correctly identify instances of this form of air 

pollution. However, six samples were incorrectly labelled as "high pollution" and five samples as "low 

pollution." This shows that adding "moderate pollution" as a new category was a mistake. The program 

identified 103 samples in the "Low Pollution" category correctly. These results demonstrate the model's 

ability to recognize clean air pollution conditions. Two samples were incorrectly labelled as "moderate 

pollution" and two samples as "high pollution." This implies a minor misunderstanding of the term "low 

pollution." The program correctly predicted the presence of 110 samples in the "high pollution" 

category. This proves that the model can identify extraordinarily high amounts of air pollution. There 

were just two samples that were incorrectly labelled "moderate pollution" and five samples that were 

labelled "low pollution." This illustrates that the error in classifying "high pollution" is also minor. 

Overall, the confusion matrix findings suggest that the classification model performs well in 

classifying air pollution into three categories. Despite a few mistakes, most of the predicts were true. 

Further analysis using metrics such as accuracy, recall, and F1-score may provide a more comprehensive 

insight into this model's performance [29]. The findings of the air quality classification model's 

performance evaluation in the Jakarta area reveal that this model has a decent ability to categorize air 

pollution into three categories, namely "moderate pollution," "low pollution," and "high pollution." This 

model has an accuracy of roughly 93%, which implies that the model correctly predicts the majority of 

the time. 

In the context of air quality, there are two key measures to consider: "recall" and "F1-score." The 

recall assesses the model's ability to properly recognize air pollution, whereas the F1-score represents 

the model's ability to identify and classify air pollution types. The model has a recall of roughly 86% 

for the "Moderate Pollution" category. This means that the program can identify that around 86% of all 

actual air pollution cases fall into the "moderate pollution" category. The F1-score for this category is 

0.9, indicating a reasonable balance between the model's ability to distinguish and categorize moderate 

pollution. The model has a very high recall for the "Low Pollution" category, which is over 96%. This 

demonstrates that the algorithm is quite good at detecting clean air pollution, recognizing around 96% 

of all situations of "low pollution." This category has an F1-score of 0.94, indicating extremely strong 

performance. Meanwhile, the model has a recall of around 94% for the "High Pollution" category, 

indicating a good capacity to distinguish extremely high levels of air pollution. This category's F1-score 

is also 0.94, indicating that this model performs well in classifying high pollution. Overall, this 

classification model is capable of categorizing air pollution into three groups with excellent accuracy, 

sensitivity, and a good balance of F1-score and recall. As a result, this model may be depended on to 

accurately estimate air quality in the Jakarta area. 

4.3. Pollutants' contribution to Jakarta's air pollution 

In the framework of this study, it is critical to identify what elements have the greatest influence on air 

quality in the Jakarta area. The categorization model's variable importance (Figure 5) analysis results 

demonstrate that the concentration of various types of air pollutants has a substantial impact on 

determining air quality. Several important conclusions are obtained based on the variable's importance: 

a. Particulate Matter 10 (PM10), or airborne particles having a diameter of fewer than 10 

micrometers [44], has the largest impact on Jakarta's air quality. The high significance number 

shows that the PM10 level has a considerable impact on the region's level of air pollution. As a 

result, controlling PM10 emissions is critical in attempts to improve air quality. 

b. Sulfur dioxide (SO2) has a significant impact on air quality. SO2 is often produced by industry 

and the combustion of fossil fuels[45]. Controlling SO2 emissions must be a major priority to 

reduce air pollution. 
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c. Nitrogen dioxide (NO2), which is frequently emitted by motor vehicles, also has a substantial 

impact[46]. This demonstrates the significance of reducing car emissions to preserve excellent air 

quality. 

 

Figure 5. The contribution of the importance variable to air 

pollution in Jakarta 

d. Particulate matter 2.5 (PM2.5), while less essential than PM10, is still an important factor in 

determining air quality[47]. PM2.5 is a very small particulate matter that, if ingested over time, 

can have major health consequences. 

e. Carbon monoxide (CO), which is formed during fuel burning, also has an impact on air quality, 

though its importance is lesser than that of other causes[48]. 

f. Ozone (O3) has the least relevance yet still has an impact on air quality[49]. If a chemical reaction 

occurs in the open air, ozone can generate air pollution. 

Decisions about emission control policies can be more directed and successful if these aspects are 

understood. Efforts to minimize PM10, SO2, NO2, and PM2.5 emissions, as well as monitor CO and 

O3 levels, will be critical in preserving and improving Jakarta's healthy air quality. 

5. Conclusion 

This study contributes significantly to our understanding of air quality in Jakarta areas by combining the 

capability of AI with a semi-supervised learning approach. The clustering method was used to divide 

air pollution data into three categories: moderate pollution, low pollution, and high pollution. This phase 

is to comprehend the similarities between metrics such as PM10, SO2, NO2, and others, even in the 

absence of a clear air quality label. This contribution is a vital first step towards improving and sustaining 

Jakarta's air quality. To estimate air quality in these places, the Random Forest classification model has 

been adjusted with the optimal parameters. The model has an accuracy rate of roughly 93%, proving 

AI's capacity to discern complicated patterns in unstructured air data. Furthermore, variables are 

necessary to comprehend the impact of each component on air quality. The findings emphasize the 

importance of PM10, SO2, and NO2 in influencing air quality. This is an example of how AI can aid in 

the investigation of intricate interactions between multiple environmental data. This study demonstrates 

the enormous potential of AI, particularly semi-supervised learning approaches, in understanding and 

managing air quality in places such as Jakarta. We intend to make a greater contribution to sustainable 

environmental policies and a healthier environment for Jakarta's inhabitants by utilizing this technology. 
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