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Abstract. In the era of modern agriculture, satellite imagery has been widely used to monitor 

crops, one of which is paddy. This paper tries to describe the vegetation indices, climate, and 

soil index features related to paddy plants and curates a collection of satellite imagery on the 

Google Earth Engine (GEE). This paper reveals how GEE can be used to collect and process 

multimodal satellite imagery to form a precision agriculture dataset. The objective of this study 

is to establish a comprehensive precision agriculture dataset by leveraging multimodal satellite 

imagery to monitor paddy crops. The data collected as a dataset originates from 306 locations in 

Karawang Regency, Indonesia, during the 2019-2020 period. In the first step, we identify the 

relevant features essential for paddy crop analysis. Subsequently, we carefully select image 

collections within GEE based on these features. Afterward, we perform data acquisition and 

necessary preprocessing through the Google Colab environment. The results showed that 

satellite imagery from Sentinel-2 outperforms Landsat 8 in terms of spatial and temporal 

resolution. Apart from that, the generated dataset successfully captures the growth patterns of 

paddy plants. 

1. Introduction 

The agricultural sector as the backbone of meeting global food needs has undergone a fundamental 

transformation in line with advances in information technology and the development of satellite 

imagery. This era of modern agriculture has brought about significant transformation and provided a 

solid foundation for innovation in the agricultural sector. This innovation includes a combination of 

information technology and the use of increasingly accurate satellite imagery. These innovations provide 

deeper insight into the agricultural environment. This allows agricultural actors to make more precise 

and effective decisions [1]. 

In this context, this paper specifically focuses on the field of food crop agriculture, namely wetland 

and dryland paddy. As a central aspect of meeting global food needs, paddy farming is the focus. 

Precision agriculture is emerging as a key paradigm in efforts to increase productivity, reduce 

environmental impact, and address the challenges of climate change [2]. In this practice of precision 

agriculture, the role of satellite imagery is increasingly important. Satellite imagery provides an 
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important means of understanding and monitoring plant growth dynamics, as well as the complex 

interactions between plants and their environment [3]. 

This paper will review how Google Earth Engine (GEE), as an innovative technology, plays an 

important role in collecting, managing, and analyzing multimodal satellite imagery. The main goal of 

using GEE is to form rich and in-depth datasets to support precision agriculture. GEE is a sophisticated 

platform that allows users to efficiently access, analyze, and combine satellite image data from various 

sources [4]. This paper will detail the important features relevant to crop farming within the GEE 

framework, including selecting a series of images from the GEE that match those features. In addition, 

this paper will also discuss how the integration of spectral data from various satellite imagery sources 

can strengthen more accurate monitoring of plant growth and more in-depth predictions of crop yields 

[1]. 

In addition to its technical merits, this paper has the broader goal of providing a database to support 

more in-depth precision agricultural analysis. This research has the potential to support the development 

of more sophisticated analytical models, including more accurate classification of paddy growth and 

yield prediction, to address global challenges in the agricultural sector [2]. 

2. Study Area 

This study was carried out at Karawang regency (latitude 5º56` to 6º34` S and longitude 107º02` to 

107º40` E) in West Java, Indonesia (Figure 1). Karawang district, like other regions in Indonesia, has 

two seasons, dry and rainy. Monthly precipitation in Karawang ranges from 56.2 to 194.8 mm, surface 

temperatures range from 16.6 to 32.2 Celsius, and wind speeds range from 0.0 to 8.2 meters per second. 

Due to the favourable conditions, paddy production in this region reached 1.22 million tons in 2022, 

covering an area of 204,326 hectares. In this study, satellite imagery of paddy fields was obtained from 

306 specific coordinate points during the 2019-2020 period, relying on the Crop Cutting Survey as 

ground truth. Crop Cutting Survey is a survey conducted by Statistics Indonesia (Badan Pusat Statistik) 

on a regular basis. The main objective of this survey is to obtain information on the yield per hectare 

(productivity) of food crops, both paddy and secondary crops. Besides, the survey also collects 

information on variables affecting productivity, such as cultivation characteristics and government 

assistances to boost productivity [4]. 

 

Figure 1. Study area (Karawang, West Java, Indonesia) 
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3. Theoretical Background 

3.1. Satellite Imagery 

Satellite imagery plays an important role in realizing precision agriculture by providing visual insight 

into agricultural land from a height. Satellite imagery is image data taken by satellites orbiting the Earth 

and includes various visual information about the Earth's surface. This satellite image data is very useful 

in understanding the dynamics of plant growth, water availability, soil conditions, and environmental 

interactions in agricultural practices [5]. Satellite imagery consists of various spectral bands that record 

electromagnetic radiation at various wavelengths, including visible light, near-infrared, and far infrared. 

Each of these channels provides unique information about the characteristics of the Earth's surface, such 

as soil conditions and vegetation composition. By analyzing data from these various channels, 

researchers can understand plant conditions in more depth. In the context of this paper, multimodal 

satellite imagery, which combines information from various spectral bands and image sources, becomes 

very important. GEE is an efficient tool for managing, analyzing, and combining multimodal satellite 

imagery to develop precise agricultural datasets [5]. 

3.2. Datasets 

Datasets in precision agriculture refer to data sets that include a variety of information about agricultural 

land, including satellite imagery, weather data, soil data, and other relevant information. Appropriate 

collection and management of datasets play an important role in supporting in-depth analysis. One type 

of important dataset in precision agriculture is a satellite image dataset. Satellite images from various 

sources and spectral channels can be used to understand plant growth dynamics, assess plant health 

conditions, and identify zones on agricultural land that require special treatment [6]. These datasets can 

cover a certain period, making it possible to monitor changes over long periods. Other datasets include 

weather data such as precipitation, temperature, and wind speed. The utilization of GEE significantly 

contributes to data collection and management in the precision agriculture domain. GEE allows users to 

access and analyse a variety of satellite imagery datasets and geospatial information from various 

sources on a global scale. Researchers can integrate data from various sources with GEE to develop rich 

and informative datasets [5]. 

3.3. Google Earth Engine (GEE) 

With its specialized capabilities, GEE is a cloud computing platform uniquely tailored for the retrieval, 

analysis, and utilization of geospatial data on a highly scalable infrastructure. GEE provides access to 

an extensive data set of satellite imagery and geospatial information, including data from sources such 

as Landsat, Sentinel, MODIS, and other satellite data. This platform allows researchers to perform global 

or local scale analyses quickly and efficiently [5]. In the realm of precision agriculture, GEE assumes a 

pivotal role in the acquisition, administration, and analysis of multimodal satellite imagery. GEE has 

parallel processing features that enable fast analysis even on large datasets. GEE users can take 

advantage of built-in image processing algorithms or develop custom algorithms to perform more 

specific analyses. One of GEE's advantages is its ability to combine spectral data from various satellite 

image sources. This allows users to combine information from multiple spectral channels to gain a richer 

understanding of agricultural conditions. This ability becomes important in understanding the dynamics 

of plant growth, changes in land cover, and the interaction of plants with their environment. Researchers 

can perform more in-depth temporal, spatial, and spectral analyses through GEE to develop precision 

agriculture datasets [5]. 

4. Methodology 

This study is about developing a dataset for data mining, the practical of collecting multimodal satellite 

imagery data from various image collections. Figure 2 shows the life cycle of a data mining project, as 

defined as a reference model of the CRISP-DM [7]. CRISP-DM has been used in several studies such 

as predicting energy consumption [8] and automating seed counts [9]. In the context of a methodology, 
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it encompasses detailed depictions of the standard project phases along with the associated tasks for 

each phase. CRISP-DM has six sequential phases, since our goal is to create a dataset, we will only 

discuss the first two phases, namely business understanding, and data understanding. We will briefly 

cover the business understanding phase and focus more on data understanding.    

 

Figure 2. The CRISP-DM life cycle 

4.1. Business Understanding 

The business understanding phase places its emphasis on comprehending the project's objectives and 

prerequisites. In this study, we aim to develop a satellite imagery dataset that can be used to carry out 

analysis related to paddy crops. The conditions needed to do this are data related to crop yields which 

will be used as field truth data. 

4.2. Data Understanding 

The data understanding phase entails a comprehensive examination of the available data for the mining 

process. This pivotal step is instrumental in pre-empting unforeseen issues in the subsequent phase, as 

it encompasses data access and exploration using tables and visual graphics.  

4.2.1. Collecting Initial Data. At this point, we are prepared to access the data and incorporate it into 

our dataset. Before we start to collect data, there are several things that we must pay attention to, such 

as which areas we will collect data from, what timeframe we will use, which features from the image 

collections seem most promising, how to merge various data sources, and how missing values are 

handled. Potential and tested features that have been used by researchers are inventoried at this stage. 

Based on these features, we curate the image collection in GEE. Image collections with the best temporal 

resolution and spatial resolution will be selected for data collection according to the features. Apart from 

that, the most important thing is that the image collection has data where the research will be carried out 

because there are several image collections that specifically only provide data for certain regions or 

countries. 

4.2.2. Describing Data. The describing data phase aims to describe and analyse existing data such as 

data formats, number of records, and field identities, including descriptive statistics and distribution of 

variables. This helps identify early patterns, trends, and anomalies in the data to understand the data 

present in the dataset in greater depth. With a good understanding of the data, we can make better 

decisions about the next steps. A good understanding of the data will help minimize the risk of error and 

ensure that analysis results are based on quality and relevant data. 
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4.2.3. Exploring Data. In this data exploring phase, we carry out visual exploration and deeper analysis 

of the data using visualization techniques and statistical analysis tools. This phase aims to explore new 

insights about data through deeper exploration and analysis. The main goal is to identify patterns, trends, 

anomalies, and other valuable information that may not be visible in previous stages. 

4.2.4. Verifying Data Quality. The verifying data quality phase focuses on checking and verifying data 

quality. The main goal is to ensure that the data used is of good quality, free from missing values, 

outliers, or data errors that can affect model performance and analysis results. 

5. Results and Discussion 

5.1. Features and Image Collection 

Satellite imagery offers valuable features, such as vegetation indices, which can be empirically extracted 

and modelled to quantify biophysical parameters including plant height, leaf width, and chlorophyll 

content [10]. The empirical relationship between vegetation indices derived from satellite imagery and 

in-situ observations for predicting crop yields has been extensively explored in previous research [11]. 

Plant spectral properties exhibit species-specific variations but share a common underlying pattern. 

Factors such as plant age, drought stress, or pest infestations can alter the spectral reflectance of leaves. 

These variations form the fundamental basis for the development of the current vegetation index, 

essentially represented as a mathematical formula incorporating multiple spectral channels or 

wavelengths, necessitating its computation using a specific formula [12]. Furthermore, climate and 

weather data are also frequently employed features. Elevated temperatures, for instance, can negatively 

impact yields by reducing pollen fertility [13], diminishing the weight of a thousand grains by 4.6%, 

and decreasing the harvest index by 20% [14]. Exposure to wind and rain can similarly influence rice 

production by causing paddy plants to lodge [15], thereby affecting grain weight and increasing the 

proportion of empty grains [16]. Numerous studies have demonstrated that integrating meteorological 

data with satellite imagery enhances the performance of crop yield prediction models [17] [18]. Table 1 

provides an overview of the features employed in various studies for predicting paddy yields. 

Table 1. Features used in the precision agriculture domain of paddy rice crop 

Location 
Image 

Source 
Task Features Ref 

Bangla-

desh 

Sentinel-2 Prediction Vegetation indices (NDVI, NDWI, RGVI, MSI, 

LAI) 

[19] 

Nepal Sentinel-2 Prediction B2-12, vegetation indices (NDVI), climate 

(precipitation, temperature, relative humidity), soil 

[20] 

China MODIS Prediction Vegetation indices (EFI, SIF), climate, soil [21] 

South 

Korea. 

North 

Korea 

MODIS Prediction Vegetation indices (NDVI, OSAVI, RDVI, MTVI, 

EVI, LSWI), Climate 

[22] 

South 

Korea 

MODIS Prediction Vegetation indices (NDVI, EVI, LAI, FPAR), 

climate (precipitation, temperature, solar radiation) 

[23] 

China Sentinel-1, 

Sentinel-2 

Prediction VV, VH, EVI, NDRE, Meteorological data (tmax, 

tmin, tmean, precipitation, sunshine duration, 

relative humidity, EAT, AAT, solar radiation) 

[24] 

China Sentinel-2 Classification BSI, LSWI, GCVI, NDVI, EVI, PSRI [25] 

Malaysia Sentinel-1 Classification VH [26] 

Malaysia, 

Indonesia 

Sentinel-1 Classification VH [27] 

Pakistan Sentinel-2 Classification B1-12, NDVI, NDWI, NDMI [28] 

USA USDA-

NAIP 

Classification RGB, NIR [29] 
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Location 
Image 

Source 
Task Features Ref 

Indonesia Sentinel-1, 

Sentinel-2 

Classification VV, VH, B2-12, NDVI, EVI, LSWI [30] 

Brazil Sentinel-1 Classification VV, VH [31] 

China Sentinel-1 Classification VV, VH [32] 

China Sentinel-2, 

MODIS 

Classification Blue, Green, Red, NIR, SWIR1, SWIR2, EVI, WI, 

Meteorological data 

[33] 

China Sentinel-1, 

Sentinel-2 

Classification VV, VH, B1-12, NDVI, Phenology [34] 

India Sentinel-1, 

Sentinel-2 

Classification VV, VH, B1-12, NDVI [35] 

Indonesia Landsat 8 Classification B1-7, EVI, NDVI, NDBI, NDWI [36] 

China Landsat 8 Segmentation B1-7 [37] 

Bangla-

desh 

WorldView-

3 

Segmentation Blue, Green, Red, NIR [38] 

Satellite imagery exhibits variability in spatial resolution (ranging from kilometers to meters), 

temporal resolution (spanning from monthly to daily), and spectral characteristics. Researchers in the 

agricultural domain commonly utilize diverse satellite image datasets, including MODIS 

[21][22][23][33], Sentinel-2 [19][20][24][25][28][30][33][34][35], Sentinel-1 [24][26][27][30][31][32] 

[34][35], Landsat 8 [36][37]. In some instances, researchers employ multimodal satellite imagery, 

incorporating Sentinel-2 multispectral data alongside Sentinel-1 radar data [24][30][34][35]. 

Concurrently, other studies [33] make use of multispectral data from both MODIS and Sentinel-2. A 

summary of several datasets and image collections available within the GEE is presented in Table 2. 

Table 2. Image collections in GEE 

Data Provider Dataset Image Collection Band 
Resolution 

Spatial  Temporal  

European 

Union/ESA/C

opernicus 

Sentinel-2 COPERNICUS/S2_ 

SR_HARMONIZED 

B1-12 10-60 m 5-day 

Sentinel-1 SAR 

GRD 

COPERNICUS/S1_GR

D 

VV, VH 10 m daily 

USGS USGS Landsat 8 LANDSAT/LC08/ 

C02/ T1_L2 

SR_B*, ST_B10 30 m 8-day 

NASA MODIS Terra MODIS/061/ 

MOD09GQ 

sur_refl_b01, 

sur_refl_b02 

250 m daily 

MODIS Leaf 

Area Index 

MODIS/061/ 

MCD15A3H 

Fpar, Lai 500 m 4-day 

University of 

California 

Merced 

TerraClimate IDAHO_EPSCOR/ 

TERRACLIMATE 

pr, tmmx, tmmn, 

def, aet, pdsi, soil, 

vs, srad 

4638.3 m monthly 

NASA / 

USGS / JPL-

Caltech 

NASA SRTM 

Digital Elevation 

USGS/SRTMGL1_ 

003 

elevation 30 m - 

 

Table 3 presents the features employed for predicting paddy yields, which have been associated with 

the image collection within the GEE. This mapping process is undertaken to streamline data acquisition, 

ensuring alignment between the collected data and the specified features. 

 

 

 

 



 
 
 
 
 
 

374 

B S Wijaya et al 

Table 3. Mapping of features to image collection 

Feature Band Unit Image Collection 

Elevation elevation m USGS/SRTMGL1_003 

Slope slope 0 USGS/SRTMGL1_003 

Minimum temperature tmmn C IDAHO_EPSCOR/TERRACLIMATE 

Maximum temperature tmmx C IDAHO_EPSCOR/TERRACLIMATE 

Precipitation accumulation pr mm IDAHO_EPSCOR/TERRACLIMATE 

Wind-speed vs m/s IDAHO_EPSCOR/TERRACLIMATE 

Surface downward shortwave radiation srad W/m2 IDAHO_EPSCOR/TERRACLIMATE 

Soil moisture soil mm IDAHO_EPSCOR/TERRACLIMATE 

Actual evapotranspiration aet mm IDAHO_EPSCOR/TERRACLIMATE 

Palmer Drought Severity Index pdsi - IDAHO_EPSCOR/TERRACLIMATE 

Fraction of Photosynthetically Active 

Radiation 
Fpar - MODIS/061/MCD15A3H 

Leaf Area Index Lai - MODIS/061/MCD15A3H 

VV, VH Polarization VV, VH - COPERNICUS/S1_GRD 

Multispectral/Surface Reflectance 

B1-12 nm COPERNICUS/S2_SR_HARMONIZED 

SR_B1-7 μm LANDSAT/LC08/C02/T1_L2 

sur_refl_b01, 

sur_refl_b02 
nm MODIS/061/MOD09Q1 

The vegetation index is a calculated numerical value derived from specific spectral bands [12]. Table 

4 provides an overview of various vegetation indices associated with crop yield predictions, along with 

the corresponding mathematical formulas employed. 

Table 4. Vegetation Indices and their corresponding spectral bands 

and mathematical formulas 

 Name Formula Ref 

 NDVI 𝑁𝐼𝑅 −  𝑅𝑒𝑑

𝑁𝐼𝑅 +  𝑅𝑒𝑑
 

[39] 

 MSI 𝑆𝑊𝐼𝑅1

𝑁𝐼𝑅
 

[40] 

 GNDVI 𝑁𝐼𝑅 −  𝐺𝑟𝑒𝑒𝑛

𝑁𝐼𝑅 +  𝐺𝑟𝑒𝑒𝑛
 

[41] 

 ExG 2  ×  𝐺𝑟𝑒𝑒𝑛 −  𝑅𝑒𝑑 −  𝐵𝑙𝑢𝑒 [42] 

 NDWI 𝐺𝑟𝑒𝑒𝑛 −  𝑁𝐼𝑅

𝐺𝑟𝑒𝑒𝑛 +  𝑁𝐼𝑅
 

[43] 

 VARI 𝐺𝑟𝑒𝑒𝑛 −  𝑅𝑒𝑑

𝐺𝑟𝑒𝑒𝑛 +  𝑅𝑒𝑑 −  𝐵𝑙𝑢𝑒
 

[44] 

 PVR 𝐺𝑟𝑒𝑒𝑛 −  𝑅𝑒𝑑

𝐺𝑟𝑒𝑒𝑛 +  𝑅𝑒𝑑
 

[45] 

5.2 Data Acquisition 

The data acquisition process commences with the initial data collection phase, which relies on a 

combination of ground-truth data, factors influencing crop yields, and image retrieval from GEE. 

Ground-truth data is sourced from the Crop Cutting Survey, and the corresponding survey coordinates 
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serve as reference points for extracting image data from GEE. At this stage, the data generated consists 

of spectral band information obtained from the image collection, corresponding to specific coordinates 

and timestamps. Since the spectral data we gather originates from Sentinel-2 Level 2A and Landsat 8 

Level 2, which have undergone radiometric and atmospheric corrections, additional corrections are 

unnecessary, thus conserving time and resources. Our primary task during this preprocessing phase is 

cloud and cloud shadow masking to ensure that the extracted band values accurately represent ground 

conditions. Subsequently, we proceed to calculate vegetation indices using established formulas. The 

outcome of this process encompasses vegetation indices and other relevant data that align with the 

specified features. Figure 3 illustrates the stepwise procedure of data acquisition. 

 
Figure 3. Data acquisition procedures 

This research leveraged the capabilities of GEE, with a notable departure from traditional JavaScript-

based console interaction. Instead, we harnessed the power of Python within the Google Colab 

environment to interface with GEE seamlessly. Subsequently, the data produced by GEE was efficiently 

stored on both Google Drive and local storage repositories. The architecture underpinning this data 

acquisition process is visually presented in Figure 4. 

 
Figure 4. Data acquisition architecture 
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5.3 Dataset 

5.3.1 Data Structure 

The data obtained through the satellite image acquisition process is stored in a CSV and TIF file, 

generating a total of 42,948 data records from 306 coordinate points spanning the period of 2019-2020. 

Notably, 53.95% of the acquired data was marked as null, primarily due to the cloud and cloud shadow 

masking procedures. Detailed insights into the dataset's structure and metadata are presented in Figure 

5. 

 

Figure 5. Structure of vegetation indices data (top), climate and soil data (middle), and RGB satellite 

images metadata (bottom) 

Utilizing the derived vegetation index data, we conducted a straightforward analysis by plotting 

graphs depicting NDVI and EVI against date. The NDVI and EVI datasets were resampled using the 

median method with a monthly interval. The outcomes are illustrated in Figure 6. The graph shows a 

clear pattern, with NDVI displaying peak values indicative of the vegetative phases of paddy growth, 

while the valleys correspond to planting or harvesting periods. Notably, the data from Sentinel-2 

consistently generates a clearer and more coherent pattern compared to Landsat 8. This discrepancy can 

be attributed to the superior spatial and temporal resolution capabilities of Sentinel-2 in contrast to 

Landsat 8. 

 

Figure 6. Comparison of NDVI and EVI between Sentinel-2 (left) and Landsat 8 (right) 
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5.4 Discussion 

Numerous aspects can be explored concerning the establishment of a precision agriculture dataset 

utilizing satellite image data through GEE. 

5.4.1 Area of Interest. The research area of interest in this study corresponds to the region covered by 

the Crop Cutting Survey. The projected paddy harvest productivity, as per official statistical data 

released by Statistics Indonesia [4], is quantified in quintals per hectare, prompting our adoption of a 1-

hectare (10,000 square meters) boundary for our research area. For each existing coordinate point, a 1-

hectare area is delineated. In Figure 7, we illustrate the obtained area, defined using a 100-meter buffer 

around Sentinel-2 and Landsat 8 satellite images. Sentinel-2 exhibits a 10-meter spatial resolution for 

the Red, Green, and Blue spectral channels, while Landsat 8 offers a 30-meter resolution. This disparity 

in resolution influences the resulting pixel area; Sentinel-2 satellite imagery represents a 10x10 pixel 

configuration, whereas Landsat 8 employs a 3x3 pixel arrangement. Consequently, there is a difference 

in the resulting area size, with Sentinel-2 encompassing 1 hectare, while Landsat 8 covers only 0.81 

hectares. 

 

Figure 7. Comparison of pixel area between Sentinel-2 (left) and Landsat 8 (right) 

5.4.2 Sequence of Data Processing 

The sequence of data processing steps significantly impacts the computed vegetation index values. This 

pertains to the order of calculating the vegetation index formula and the subsequent resampling process. 

Table 5 presents the spectral values for a specific coordinate point in May 2019, while Table 6 showcases 

the NDVI and EVI values for May 2019 based on varying processing sequences. Upon examination, it 

becomes evident that variations in processing order lead to disparities in the calculated values. 

Table 5. Spectral band values from Sentinel-2 for a selected coordinate point * 

Date Aerosol Blue Green Red RE1 RE2 RE3 NIR RE4 
Water 

Vapor 
SWIR1 SWIR2 

05-05-19 0.087 0.086 0.118 0.076 0.152 0.352 0.443 0.433 0.488 0.468 0.199 0.097 

10-05-19 0.227 0.235 0.221 0.185 0.228 0.297 0.341 0.327 0.344 0.652 0.205 0.180 

15-05-19 0.032 0.044 0.085 0.068 0.146 0.287 0.342 0.336 0.385 0.368 0.208 0.114 

20-05-19 0.028 0.048 0.086 0.085 0.158 0.262 0.308 0.306 0.350 0.340 0.237 0.150 

25-05-19 0.053 0.069 0.103 0.127 0.184 0.229 0.256 0.254 0.295 0.290 0.288 0.195 

30-05-19 0.033 0.060 0.092 0.130 0.168 0.194 0.219 0.221 0.252 0.241 0.285 0.208 

  * longitude 107.5151737 and latitude -6.175384333 with 100-meter buffer 
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Table 6. Variation in NDVI and EVI for May 2019 due to data 

processing order 

Vegetation 

Indices 

First Order Score 

Difference Calculate VIs Resampling 

NDVI 0.450 0.499 0.049 

EVI 0.428 0.359 0.069 

Despite the disparities in values, they do not impact the graphical representation. Figure 8 illustrates 

the graphs of NDVI and EVI when calculating the vegetation index first and resampling first. 

 

Figure 8. Comparison of NDVI and EVI between calculating vegetation indices first (Left) and 

resampling first (Right) 

6. Conclusion 

In this study, we analysed features relevant to the paddy crop and compared them across various image 

collections available in the Google Earth Engine (GEE) platform. Our data acquisition process was 

implemented using Python and Google Colab, guided by ground-truth data. During the data 

understanding phase, it became evident that the satellite imagery produced by Sentinel-2 outperformed 

that of Landsat 8. Notable considerations in crafting these precision agriculture datasets include defining 

the specific region of interest and establishing a structured sequence for data processing. Additionally, 

the presence of clouds and cloud shadows remains a common challenge associated with satellite 

imagery. While efforts were made to mask clouds and their shadows for enhanced data accuracy, the 

issue of data loss due to excessive cloud cover occasionally emerged. To address this, several techniques 

can be used to impute missing data [46], thereby complementing the study, and elevating the overall 

quality of the dataset. 

 

References 

[1] Sishodia RP, Ray RL, Singh SK, 2020, Applications of Remote Sensing in Precision Agriculture: 

A Review. Remote Sensing. 

[2] FAO, 2021, The State of Food Security and Nutrition in the World Food and Agriculture 

Organization of the United Nations, Rome. 

[3] Lobell D and Burke M, 2010, On the Use of Statistical Models to Predict Crop Yield Responses 

to Climate Change Agricultural and Forest Meteorology, vol. 150, no. 11, pp. 1443-1452. 

[4] Badan Pusat Statistik, 2022, Executive Summary of Paddy Harvested Area and Production in 

Indonesia 2021, Jakarta. 

[5] Gorelick N, Hancher M, Dixon M, Ilyushchenko S, Thau D, Moore R., 2017, Google Earth 

Engine: Planetary-scale geospatial analysis for everyone Remote Sensing of Environment. 



 
 
 
 
 
 

379 

B S Wijaya et al 

[6] Mulla D, 2013, Twenty-five years of remote sensing in precision agriculture: Key advances and 

remaining knowledge gaps Biosystems Engineering, vol. 114, no. 4, pp. 358-371. 

[7] Shearer C, 2000, The CRISP-DM Model: The New Blueprint for Data Mining. Journal of Data 

Warehousing, 5, 13-22. 

[8] Gumz, J., Fettermann, D.C., Frazzon, E.M., Kück, M. Using Industry 4.0’s Big Data and IoT to 

Perform Feature-Based and Past Data-Based Energy Consumption Predictions. 

Sustainability 2022, 14, 13642. https://doi.org/10.3390/ su142013642 

[9] Fuentes-Peñailillo, F., Carrasco Silva, G.; Pérez Guzmán, R., Burgos, I.; Ewertz, F. Automating 

Seedling Counts in Horticulture Using Computer Vision and AI. Horticulturae 2023, 9, 1134. 

https:// doi.org/10.3390/horticulturae9101134 

[10] Huang Y, Chen Z, Xin Yu T, Huang Xzhi, Gu X, 2018, Agricultural remote sensing big data: 

Management and applications. In Journal of Integrative Agriculture (Vol. 17, Issue 9, pp. 

1915–1931). Chinese Academy of Agricultural Sciences. 

[11] Rembold F, Atzberger C, Savin I, Rojas O, 2013, Using Low Resolution Satellite Imagery For 

Yield Prediction And Yield Anomaly Detection. In Remote Sensing (Vol. 5, Issue 4, pp. 1704–

1733). 

[12] Xue J, Su B., 2017, Significant Remote Sensing Vegetation Indices: A Review Of Developments 

And Applications. In the Journal of Sensors 

[13] Jaisyurahman U, Wirnas D, Trikoesoemaningtyas, Purnamawati H. 2019. Dampak Suhu Tinggi 

terhadap Pertumbuhan dan Hasil Tanaman Padi. J. Agron. Indonesia, 47(3):248-254. 

[14] Khamid MBR, Junaedi A, Lubis I, Yamamoto Y, 2019, Respon Pertumbuhan dan Hasil Padi 

(Oryza sativa L.) terhadap Cekaman Suhu Tinggi. J. Agron. Indonesia, 47(2):119-125. 

[15] Dulbari, Santoso E, Koesmaryono Y, Sulistyono E, 2018, Pendugaan Kehilangan Hasil pada 

Tanaman Padi Rebah Akibat Terpaan Angin Kencang dan Curah Hujan Tinggi. J. Agron. 

Indonesia, 46(1):17-23. 

[16] Purwono, Dulbari, Santosa E, 2021, Dampak Cuaca Ekstrim Terhadap Kehampaan Genotipe 

Padi: Pengantar Manajemen Produksi Berbasis Iklim. J. Agron. Indonesia, 49(2): 136-146 

[17] Cai Y, Guan K, Lobell D, Potgieter A B, Wang S, Peng J, Xu T, Asseng S, Zhang Y, You L, & 

Peng B. 2019. Integrating Satellite and Climate Data to Predict Wheat Yield in Australia 

Using Machine Learning Approaches. Agricultural and Forest Meteorology, 274, 144–159 

[18] Schwalbert, R. A., Amado, T., Corassa, G., Pott, L. P., Prasad, P. V. V., & Ciampitti, I. A. (2020). 

Satellite-based Soybean Yield Forecast: Integrating Machine Learning and Weather Data for 

Improving Crop Yield Prediction in Southern Brazil. Agricultural and Forest Meteorology. 

[19] Islam, M. M., Matsushita, S., Noguchi, R., Ahamed, T. 2021. Development of Remote Sensing-

based Yield Prediction Models at The Maturity Stage of Boro Rice Using Parametric and 

Nonparametric Approaches. Remote Sensing Applications: Society and Environment, 22. 

[20] Fernandez-Beltran, R., Baidar, T., Kang, J., & Pla, F. 2021. Rice-yield Prediction with Multi-

Temporal Sentinel-2 Data and 3D CNN: A Case Study in Nepal. Remote Sensing, 13(7). 

[21] Cao, J., Zhang, Z., Tao, F., Zhang, L., Luo, Y., Zhang, J., Han, J., & Xie, J. 2021. Integrating 

Multi-Source Data for Rice Yield Prediction across China using Machine Learning and Deep 

Learning Approaches. Agricultural and Forest Meteorology, 297. 

[22] Jeong, S., Ko, J., & Yeom, J. M. 2022. Predicting Rice Yield At Pixel Scale Through Synthetic 

Use of Crop and Deep Learning Models with Satellite Data in South and North Korea. Science 

of the Total Environment, 802. 

[23] Ma, J. W., Nguyen, C. H., Lee, K., & Heo, J. 2018. Regional-scale Rice-yield Estimation using 

stacked Auto-encoder with Climatic and MODIS data: a case study of South Korea. 

International Journal of Remote Sensing. 

[24] Yu, W., Yang, G., Li, D., Zheng, H., Yao, X., Zhu, Y., Cao, W., Qiu, L., & Cheng, T. (2023). 

Improved prediction of rice yield at field and county levels by synergistic use of SAR, optical 

and meteorological data. Agricultural and Forest Meteorology, 342, 109729. 

https://doi.org/10.1016/j.agrformet.2023.109729 



 
 
 
 
 
 

380 

B S Wijaya et al 

[25] Ni, R., Tian, J., Li, X., Yin, D., Li, J., Gong, H., Zhang, J., Zhu, L., & Wu, D. (2021). An enhanced 

pixel-based phenological feature for accurate paddy rice mapping with Sentinel-2 imagery in 

Google Earth Engine. ISPRS Journal of Photogrammetry and Remote Sensing, 178, 282–296. 

https://doi.org/10.1016/j.isprsjprs.2021.06.018 

[26] Fatchurrachman, Rudiyanto, Soh, N. C., Shah, R. M., Giap, S. G. E., Setiawan, B. I., & Minasny, 

B. (2023). Automated near-real-time mapping and monitoring of rice growth extent and stages 

in Selangor Malaysia. Remote Sensing Applications: Society and Environment, 31. 

https://doi.org/10.1016/j.rsase.2023.100993 

[27] Rudiyanto, Minasny, B., Shah, R. M., Soh, N. C., Arif, C., & Setiawan, B. I. (2019). Automated 

near-real-time mapping and monitoring of rice extent, cropping patterns, and growth stages 

in Southeast Asia using Sentinel-1 time series on a Google Earth Engine platform. Remote 

Sensing, 11(14). https://doi.org/10.3390/rs11141666 

[28] Rauf, U., Qureshi, W. S., Jabbar, H., Zeb, A., Mirza, A., Alanazi, E., Khan, U. S., & Rashid, N. 

(2022). A new method for pixel classification for rice variety identification using spectral and 

time series data from Sentinel-2 satellite imagery. Computers and Electronics in Agriculture, 

193. https://doi.org/10.1016/j.compag.2022.106731 

[29] Dale, D. S., Liang, L., Zhong, L., Reba, M. L., & Runkle, B. R. K. (2023). Deep learning solutions 

for mapping contour levee rice production systems from very high resolution imagery. 

Computers and Electronics in Agriculture, 211. https://doi.org/10.1016/j.compag.2023. 

107954 

[30] Thorp, K. R., & Drajat, D. 2021. Deep machine learning with Sentinel satellite data to map paddy 

rice production stages across West Java, Indonesia. Remote Sensing of Environment, 265 

[31] Bem, P. P. de, de Carvalho Júnior, O. A., Carvalho, O. L. F. de, Gomes, R. A. T., Guimarāes, R. 

F., & Pimentel, C. M. M. M. (2021). Irrigated rice crop identification in Southern Brazil using 

convolutional neural networks and Sentinel-1 time series. Remote Sensing Applications: 

Society and Environment, 24. https://doi.org/10.1016/j.rsase.2021.100627 

[32] Pang, J., Zhang, R., Yu, B., Liao, M., Lv, J., Xie, L., Li, S., & Zhan, J. (2021). Pixel-level rice 

planting information monitoring in Fujin City based on time-series SAR imagery. International 

Journal of Applied Earth Observation and Geoinformation, 104. 

https://doi.org/10.1016/j.jag.2021.102551 

[33] Xiao, D., Niu, H., Guo, F., Zhao, S., & Fan, L. (2022). Monitoring irrigation dynamics in paddy 

fields using spatiotemporal fusion of Sentinel-2 and MODIS. Agricultural Water Management, 

263. https://doi.org/10.1016/j.agwat.2021.107409 

[34] Cai, Y., Lin, H., & Zhang, M. (2019). Mapping paddy rice by the object-based random forest 

method using time series Sentinel-1/Sentinel-2 data. Advances in Space Research, 64(11), 

2233–2244. https://doi.org/10.1016/j.asr.2019.08.042 

[35] Singha, C., & Swain, K. C. (2023). Rice crop growth monitoring with sentinel 1 SAR data using 

machine learning models in google earth engine cloud. Remote Sensing Applications: Society 

and Environment, 32. https://doi.org/10.1016/j.rsase.2023.101029 

[36] Suryono, H.; Kuswanto, H.; Iriawan, N. Two-Phase Stratified Random Forest for Paddy Growth 

Phase Classification: A Case of Two-Phase Stratified Random Forest for Paddy Growth Phase 

Classification: A Case of Imbalanced Data. https://doi.org/10.3390/10.3390/su142215252 

[37] Xia, L., Zhao, F., Chen, J., Yu, L., Lu, M., Yu, Q., Liang, S., Fan, L., Sun, X., Wu, S., Wu, W., 

& Yang, P. (2022). A full resolution deep learning network for paddy rice mapping using 

Landsat data. ISPRS Journal of Photogrammetry and Remote Sensing, 194, 91–107. 

https://doi.org/10.1016/j.isprsjprs.2022.10.005 

[38] Yang, R., Ahmed, Z. U., Schulthess, U. C., Kamal, M., & Rai, R. (2020). Detecting functional 

field units from satellite images in smallholder farming systems using a deep learning based 

computer vision approach: A case study from Bangladesh. Remote Sensing Applications: 

Society and Environment, 20. https://doi.org/10.1016/j.rsase.2020.100413 



 
 
 
 
 
 

381 

B S Wijaya et al 

[39] Rouse, J.W., Haas, R.H., Schell, J.A. and Deering, D.W. 1973. Monitoring Vegetation Systems in 

the Great Plains with ERTS (Earth Resources Technology Satellite). Proceedings of 3rd Earth 

Resources Technology Satellite Symposium, Greenbelt, 10-14 December, SP-351, 309-317. 

[40] Hunt E R, Rock B N, 1989, Detection of changes in leaf water content using Near and Middle-

Infrared reflectances, Remote Sensing of Environment, Volume 30, Issue 1, Pages 43-54 

[41] Gitelson AA, Kaufman YJ, Merzlyak MN, 1996, Use of a green channel in remote sensing of 

global vegetation from EOS-MODIS, Remote Sensing of Environment, Volume 58, Issue 3, 

Pages 289-298 

[42] Woebbecke DM, Meyer GE, Von Bargen K, Mortensen DA. 1995. Color indices for weed 

identification under various soil, residue, and lighting conditions. Trans. ASAE 38, 259–269 

[43] Zarco-Tejada PJ, Rueda CA, Ustin SL, 2003, Water content estimation in vegetation with MODIS 

reflectance data and model inversion methods, Remote Sensing of Environment, Volume 85, 

Issue 1, Pages 109-124, 

[44] Gitelson AA, Merzlyak MN, Zur Y, Stark R, and Gritz U. 2001."Non-Destructive and Remote 

Sensing Techniques for Estimation of Vegetation Status". Papers in Natural Resources. 273 

[45] Metternicht, G. 2003. Vegetation indices derived from high-resolution airborne videography for 

precision crop management. International Journal of Remote Sensing. 

[46] Li J, Heap AD, 2013, Spatial interpolation methods applied in the environmental sciences: A 

review, Environmental Modelling & Software. 


