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Abstract. Lifetime data is a type of data that consists of a waiting time until an event occurs and 

modelled by numerous distributions. One of its characteristics that is interesting to be studied is 

the hazard function due to the flexibility that it has compared to other characteristics of 

distribution. Inverse Lomax (IL) distribution is one of the distributions considered to have 

advantages in modelling hazard shape and extended in several ways to address the problem of 

non-monotone hazard which is often encountered in real life data. However, it needs to be 

extended to another family of distribution to increase its modelling potential and Kumaraswamy 

Generalized (KG) family of distribution is used as it adds two more parameters to the 

distribution. The newly developed distribution is called the Kumaraswamy Generalized Inverse 

Lomax (KGIL) distribution. The main characteristics of KGIL distribution will be derived, such 

as cumulative distribution function (cdf), probability density function (pdf), hazard function, and 

survival function. Maximum likelihood method will also be used to estimate the parameters. The 

application of the new model is based on head-and-neck cancer lifetime data set. The modelling 

results show that the KGIL distribution is the best to capture important details of the data set 

considered. 

1. Introduction 

Probability distribution has helped to model so many uncertainty problems on our daily basis. The most 

well-known probability distribution is normal distribution. Normal distribution could be used to model 

the distribution of human IQ scores, body height, and many others [1]. Normal distribution is a good 

distribution to depict a symmetry probability distribution. However, probability distribution encountered 

in daily life is not always symmetric. Asymmetric distribution is called skewed distribution since it 

could have skewed parts in its pdf curve. Skewness coefficient is used to describe how skewed a 

distribution is [2]. When dealing with this type of distribution, symmetric probability distributions 

cannot be used anymore. Some new distributions are developed to give a better picture for an 

asymmetric distributed data. 

Kumaraswamy distribution is one of the asymmetric probability distributions. It was developed to 

model hydrology phenomena at first, such as daily precipitation and reservoir volume [3]. The cdf and 

pdf of the distribution are given respectively as (1) and (2) as 

𝐹(𝑥; 𝑝, 𝑞) = 1 − (1 − 𝑥𝑝)𝑞 , 𝑥 ∈ [0,1], 𝑝 > 0, 𝑞 > 0 (1) 

and 
𝑓(𝑥; 𝑝, 𝑞) = 𝑝𝑞𝑥𝑝−1(1 − 𝑥𝑝)𝑞−1, 𝑥 ∈ [0,1]; 𝑝, 𝑞 > 0 (2) 
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with 𝑝 > 0 and 𝑞 > 0 are shape parameters. 

It can be seen from the equations (1) and (2) that Kumaraswamy distribution has a support 𝑥 ∈ [0,1] 
and it suits the range of probability values. Therefore, Cordeiro et al. [4] proposed a new family of 

distributions using Kumaraswamy distribution to extend another distribution into having a more flexible 

characteristic in its modelling potential and hazard shapes. The newly proposed family of distribution is 

called Kumaraswamy Generalized (KG) family distribution. Its cdf and pdf are given in (3) and (4) as 

𝐹(𝑥) = 1 − (1 − 𝐺(𝑥)𝑝)𝑞 , 𝑥 > 0; 𝑝, 𝑞 > 0 (3) 

and 
𝑓(𝑥) = 𝑝𝑞(1 − 𝐺(𝑥)𝑝)𝑞−1𝐺(𝑥)𝑝−1𝑔(𝑥), 𝑥 > 0; 𝑝, 𝑞 > 0 (4) 

with 𝐺(𝑥) and 𝑔(𝑥) are respectively pdf and cdf of the baseline distribution.  

Inverse Lomax (IL) distribution is one of the newly developed distributions with a good feature to 

describe asymmetric data. It is also known to be extended in several ways to capture non-monotone 

problems encountered in real life data [5]. The pdf and cdf of IL distribution are respectively given in 

(5) and (6) below: 

𝐺(𝑥; 𝜆, 𝛽) = (1 +
𝛽

𝑥
)
−𝜆

, 𝑥 > 0;  𝜆, 𝛽 > 0 (5) 

and 

𝑔(𝑥; 𝜆, 𝛽) = 𝜆𝛽𝑥−2 (1 +
𝛽

𝑥
)
−(𝜆+1)

, 𝑥 > 0;  𝜆, 𝛽 > 0 (6) 

where 𝜆 > 0 is shape parameter and 𝛽 > 0 is scale parameter. 

2. Kumaraswamy Generalized Inverse Lomax (KGIL) Distribution 

A random variable 𝑋 follows KGIL distribution if its pdf and cdf could be expressed respectively in 

equation (7) and (8) as follows: 

𝐹(𝑥; 𝛽, 𝜆, 𝑝, 𝑞) = 1 − [1 − (1 +
𝛽

𝑥
)
−𝜆𝑝

]

𝑞

, 𝑥 > 0;  𝜆, 𝛽, 𝑝, 𝑞 > 0 (7) 

and 

𝑓(𝑥; 𝛽, 𝜆, 𝑝, 𝑞) = 𝜆𝛽𝑝𝑞𝑥−2 (1 +
𝛽

𝑥
)
−[𝜆𝑝+1]

[1 − (1 +
𝛽

𝑥
)
−𝜆𝑝

]

𝑞−1

, 

 𝑥 > 0;  𝜆, 𝛽, 𝑝, 𝑞 > 0 

(8) 

where 𝛽 is scale parameter and 𝑝, 𝑞, 𝜆 are scale parameters [6]. 

From the pdf and cdf above, we can derive some of the main characteristics of KGIL distribution: 

2.1. Survival function 

Survival function is the complementary of cdf. Therefore, from the KGIL cdf (7), survival function 

could be obtained as: 
𝑆(𝑥; 𝛽, 𝜆, 𝑝, 𝑞) = 1 − 𝐹(𝑥; 𝛽, 𝜆, 𝑝, 𝑞) 

= [1 − (1 +
𝛽

𝑥
)
−𝜆𝑝

]

𝑞

, 𝑥 > 0;  𝜆, 𝛽, 𝑝, 𝑞 > 0 

 

(9) 

2.2. Hazard function 

Hazard function of KGIL distribution could be derived from the mathematical definition of hazard 

function: 
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ℎ(𝑥) =
𝑓(𝑥)

𝑆(𝑥)
 

=

𝜆𝛽𝑝𝑞𝑥−2 (1 +
𝛽
𝑥
)
−[𝜆𝑝+1]

[1 − (1 +
𝛽
𝑥
)
−𝜆𝑝

]

𝑞−1

[1 − (1 +
𝛽
𝑥
)
−𝜆𝑝

]

𝑞 ; 𝑥 > 0; 𝑝, 𝑞, 𝜆, 𝛽 > 0 

= 
𝜆𝛽𝑝𝑞𝑥−2 (1 +

𝛽
𝑥
)
−[𝜆𝑝+1]

1 − (1 +
𝛽
𝑥
)
−𝜆𝑝

; 𝑥 > 0; 𝑝, 𝑞, 𝜆, 𝛽 > 0 

 

(10) 

3. Parameter Estimation of the KGIL Distribution 

The MLE method is an approach used in determining the parameters that maximize the likelihood 

function of the sample data. Taking an observed sample 𝑥1, 𝑥2, … , 𝑥 𝑛 from the KGIL distribution, the 

corresponding likelihood function can be represented as 

𝐿 (𝜽) =∏𝑓(𝑥𝑖 ; 𝜽)

𝑛

𝑖=1

 

=∏𝜆𝛽𝑝𝑞𝑥𝑖
−2 (1 +

𝛽

𝑥𝑖
)
−[𝜆𝑝+1]

[1 − (1 +
𝛽

𝑥𝑖
)
−𝜆𝑝

]

𝑞−1𝑛

𝑖=1

 

= (𝜆𝛽𝑝𝑞)𝑛 ×∏𝑥𝑖
−2

𝑛

𝑖=1

×∏(1 +
𝛽

𝑥𝑖
)
−[𝜆𝑝+1]

×

𝑛

𝑖=1

∏[1 − (1 +
𝛽

𝑥𝑖
)
−𝜆𝑝

]

𝑞−1𝑛

𝑖=1

 

 

(11) 

The log likelihood function is given by: 
𝑙(𝜽) = ln[𝐿(𝜽)] 

= 𝑛(ln 𝜆 + ln𝛽 + ln 𝑝 + ln 𝑞) − 2∑ln𝑥𝑖

𝑛

𝑖=1

− (𝜆𝑝 + 1)∑ln (1 +
𝛽

𝑥𝑖
)

𝑛

𝑖=1

+ (𝑞

− 1)∑ ln1 − (1 +
𝛽

𝑥𝑖
)
−𝜆𝑝𝑛

𝑖=1

 

(12) 

Thus, the MLEs of 𝑝, 𝑞, 𝜆, and 𝛽, respectively denoted by 𝑝̂, 𝑞̂, 𝜆̂, and 𝛽̂, could be obtained by deriving 

its log likelihood partially to each parameter equal zero. 

𝜕

𝜕𝑝
𝑙(𝜽) =

𝑛

𝑝
− 𝜆∑ln (1 +

𝛽

𝑥𝑖
)

𝑛

𝑖=1

+ (𝑞 − 1)𝜆∑
(1 +

𝛽
𝑥𝑖
)
−𝜆𝑝

ln (1 +
𝛽
𝑥𝑖
)

1 − (1 +
𝛽
𝑥𝑖
)
−𝜆𝑝

𝑛

𝑖=1

 (13) 

𝜕

𝜕𝑞
𝑙(𝜽) =

𝑛

𝑞
+∑ln [1 − (1 +

𝛽

𝑥𝑖
)
−𝜆𝑝

]

𝑛

𝑖=1

 (14) 

𝜕

𝜕𝜆
𝑙(𝜽) =

𝑛

𝜆
− 𝑝∑ln (1 +

𝛽

𝑥𝑖
)

𝑛

𝑖=1

+ 𝑝(𝑞 − 1)∑

[
 
 
 (1 +

𝛽
𝑥𝑖
)
−𝜆𝑝

ln (1 +
𝛽
𝑥𝑖
)

1 − (1 +
𝛽
𝑥𝑖
)
−𝜆𝑝

]
 
 
 𝑛

𝑖=1

 (15) 

𝜕

𝜕𝛽
𝑙(𝜽) =

𝑛

𝛽
− (𝜆𝑝 + 1)∑[

1

𝑥𝑖 (1 +
𝛽
𝑥𝑖
)
]

𝑛

𝑖=1

+ (𝑞 − 1)∑

[
 
 
 𝜆𝑝 (1 +

𝛽
𝑥𝑖
)
−𝜆𝑝

𝑥𝑖 (1 +
𝛽
𝑥𝑖
)
]
 
 
 𝑛

𝑖=1

 
(16) 

It could be observed from equation (14) that the MLE of 𝑞 satisfy the following simple equation: 
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𝜕

𝜕𝑞
𝑙(𝜽) =

𝑛

𝑞
−∑ln [1 − (1 +

𝛽

𝑥𝑖
)
−𝜆𝑝

]

𝑛

𝑖=1

= 0 

𝑛

𝑞
=∑ln [1 − (1 +

𝛽

𝑥𝑖
)
−𝜆𝑝

]

𝑛

𝑖=1

 

𝑞̂ = −
𝑛

∑ ln [1 − (1 +
𝛽
𝑥𝑖
)
−𝜆𝑝

]𝑛
𝑖=1

 

(17) 

(18) 

4. Data Illustration 
We will apply the KGIL distribution to a real-life data set from the study of head-and-neck cancer 

patients conducted by Northern Carolina Oncology Group [7]. In this chapter, we will also use 

Kolmogorov-Smirnov test to statistically prove that KGIL distribution is better than IL distribution in 

modelling the data set considered. The observation contains of 42 data on patient survival time until 

death occurs. Exploratory data analysis for the data set considered is presented in Table 1, including the 

mean, median, standard deviation, standard error, range, skewness, and kurtosis. The graph of total test 

time (TTT) plotted for the data presented in Figure 1. 

Table 1. Descriptive statistics of head-and-neck cancer patients survival time. 

Mean Median Standard deviation Skewness Kurtosis Standard error Range 

280.167 160 303.125 2.409 5.921 46.773 1410 

 

 
Figure 1. The graph of total test time (TTT) plots. 

From the results in Table 1, we can see that the data set is positively skewed, and light-tailed with 

excess kurtosis of 5.921. In addition, we can see that the curve of TTT plots in Figure 1 is strictly 

concave then strictly convex. The mentioned shape of TTT curve tells us that the data set has an inverted-

bathtub hazard shape, and the hazard shape will be shown in Figure 6.  

4.1. Best model 

In this subchapter, it will be shown that KGIL distribution fits the data set of head-and-neck cancer 

patients survival time better than IL distribution. 

4.1.1. Comparison between both cdf of models and empirical cdf. From Figure, we can see that the blue 

line is the empirical CDF of the data set and it is best-fitted by the KGIL distribution. However, it is not 

enough to say that KGIL distribution can fit the data set better than IL distribution only by considering 

the graph of comparison between three cdfs. Hence, we have to do an objective analysis by comparing 

the values of AIC produced by IL and KGIL model. 
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Figure 2. Comparison of three curves of CDF based on the data set. 

4.1.2. Comparison by AIC values. In general, it is considered that the smaller the values of AIC, the 

better the fit of the model. Based on the AIC values, it can be concluded that the KGIL distribution fits 

the considered data set better than the IL distribution. 

Table 2. AIC values of both models. 

Distribution AIC 

Inverse Lomax 565,4261 

KGIL 559,2302 

4.1.3. Comparison by BIC values. The same thing applies to BIC values whereas the model with smaller 

BIC vales is considered a better model compared to the other one. Based on the AIC values, it can be 

concluded that the KGIL distribution fits the considered data set better than the IL distribution. 

Table 3. BIC values of both models. 

Distribution BIC 

Inverse Lomax 564.6725 

-KGIL 557.7231 

4.1.4. Likelihood Ratio Test. To provide more information about the best distribution to modelling the 

considered data set, we can perform likelihood ratio test (LRT) through these steps: 

1. Formulating hypotheses 

𝐻𝑜: Inverse Lomax distribution adequately describes the data 

𝐻1: Kumaraswamy Generalized Inverse Lomax distribution adequately describes the data 

2. Calculating Likelihood Ratio Test (LRT) statistics  

𝐿𝑅𝑇 =  −2 ∗  (𝑙𝑜𝑔 − 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑(𝐾𝐺𝐼𝐿)  −  𝑙𝑜𝑔 − 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑(𝐼𝐿) 
= 561.4261 − 551.2302 
= 10.1959 

3. Degrees of freedom 

𝑑𝑓 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑜𝑓 𝐾𝐺𝐼𝐿 − 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑜𝑓 𝐼𝐿 
= 4 − 2 
= 2 

4. Calculating the p-value with help of RStudio 

The corresponding p-value with 𝐿𝑅𝑇 = 10.1959 and 𝑑𝑓 = 2 is 𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 0.006109258 

5. Significance level 𝛼 = 0.05 
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6. Conclusion 

From this Likelihood Ratio Test, the p-value is less than the significance level. We reject the null 

hypothesis in favor of the IL distribution, indicating that IL provides a better fit for the considered 

data set. 

4.2. Parameter estimation based on the data set 

Parameter estimation process is done with the help of R version 4.1.1. We compare the parameter 

estimation values of KGIL distribution with IL distribution. 

Table 4. Comparation of parameter estimation result between IL and KGIL distribution. 

Distribution 
Parameter 

𝑝̂ 𝑞̂ 𝜆̂ 𝛽̂ 

Inverse Lomax - - 3.5542 42,0628 

KGIL 0.247558 2.963586 9.631189 171.897472 

4.3. Other quantities of the KGIL distribution based on the data set 

4.3.1. Cumulative distribution function (cdf) of data set. From Figure 3, we can see the CDF of data set 

considered based on the KGIL distribution with the estimated parameter values from Table 4. 

 

Figure 3. Cumulative distribution function of 

head-and-neck cancer patient survival time based 

on KGIL distribution. 

 

4.3.2. Probability density function (pdf) of data set. From Figure 4, we can see the PDF of data set 

considered based on the KGIL distribution with the estimated parameter values from Table 4. The PDF 

of the data set is a non-monotone curve. 

 

Figure 4. Probability density function (PDF) of 

head-and-neck cancer survival time using KGIL 

distribution. 

 

 

4.3.3. Survival function of data set. From Figure 5, we can see the survival function of data set 

considered based on the KGIL distribution with the estimated parameter values from Table 4. 
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Figure 5. Survival function of head-and-neck cancer 

survival time using KGIL distribution 

 

4.3.4. Hazard function of data set. From Figure 6, we can see that the data set has a inverted-bathtub 

hazard shape. The hazard rate constantly increases at the beginning of time, reaches a peak at some 

point, and slowly decreases for the rest of the observation period. 

 

Figure 6. Hazard function of head-and-neck 

cancer survival time using KGIL distribution 

 

 

5. Conclusion 

KGIL distribution is a newly developed distribution formulated to improve the modelling potential of a 

data set. It has four parameters, three of it are shape parameters, and one is scale parameter. The main 

quantities of the distribution can be derived, such as cumulative distribution function, probability density 

function, survival function, and hazard function. In the Chapter 4, there are three methods used to test 

whether KGIL distribution can depict the data of head-and-neck cancer patients better than IL. Based 

on the AIC and BIC values, KGIL is claimed to be the best distribution to model the considered head-

and-neck cancer patient data set as it has smaller AIC and BIC value. However, the difference between 

BIC and AIC values of KGIL and IL are too small. Therefore, we performed a likelihood ratio test 

(LRT) and it was found that IL is considered to be a good distribution to model the considered data set. 

From these tests, both distributions are good to model the considered data set. In addition to that, KGIL 

distribution can address non-monotonicity problem, i.e., inverted-bathtub hazard shape. 
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