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Abstract: Pneumonia remains a leading cause of mortality among toddlers (aged 1 to less than 

5 years) in Indonesia, with notable spatial disparities across Sumatra Island. This study examines 

factors influencing pneumonia incidence in toddlers using a Geographically Weighted Poisson 

Regression (GWPR) model to capture local variations in the effects of community health centers, 

complete basic immunization coverage, exclusive breastfeeding rates, and low birth weight 

(LBW) prevalence. Analyzing 2022 cross-sectional data from 154 districts/cities on Sumatra, 

the global Poisson regression model confirmed all predictors as statistically significant at the 5% 

level. The GWPR model with a fixed Gaussian kernel outperformed the global model, revealing 

five regional clusters with distinct combinations of significant variables. The dominant cluster 

(140 locations) showed significant effects from all predictors, while smaller clusters (14 

locations) highlighted localized patterns, such as reliance on immunization and breastfeeding in 

rural areas like Rejang Lebong. These findings underscore the need for tailored interventions to 

address regional disparities in toddler pneumonia. 

Key Words: Geographically Weighted Poisson Regression, Local Health Interventions, 

Pneumonia in Children, Spatial Analysis. 

 

1. Introduction 

Pneumonia is a respiratory infection that poses a significant challenge for children’s health, particularly 

in the toddler age group. Pneumonia is an acute infection that affects lung tissue, disrupting the oxygen 

exchange process essential for survival. Pneumonia in toddlers is characterized by symptoms such as 

coughing, difficulty breathing, and rapid breathing. The criteria for a fast breathing rate vary by age 

group, namely more than or equal to 60 breaths per minute for infants under 2 months, more than or 

equal to 50 breaths per minute for ages 2 to less than 12 months, and more than or equal to 40 breaths 

per minute for ages 1 to less than 5 years [1]. To date, pneumonia control efforts are still prioritized in 

toddlers because of their high vulnerability. 

According to the World Health Organization, Indonesia ranked ninth in the world for infant 

pneumonia mortality in 2019, with a mortality rate of 32 per 1,000 live births. It means that 

approximately 2 to 3 children die every hour from pneumonia [2]. The 2022 Ministry of Health report 

indicates that the number of pneumonia cases in infants increased by 7.38 percent from the previous 

year, suggesting an increasing disease burden amid efforts to improve the national health system [1]. 

Specifically, the increase in pneumonia cases in infants presents an obstacle to achieving Sustainable 

Development Goal 3.2, which aims to ensure a healthy life and improve the well-being of all age groups
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[3]. This increase not only affects the health aspect but also highlights the suboptimal basic health 

services and inadequate public awareness in disease prevention. Given these alarming statistics, it is 

crucial to explore effective preventive measures. Immunization is one of the most effective strategies 

for preventing pneumonia. Several vaccines are effective in preventing pneumonia, depending on the 

cause, including those for measles, Haemophilus influenzae type b (Hib), and pneumococcal conjugate 

vaccine (PCV). The Indonesian government launched a national PCV immunization program in 2022 

to prevent pneumonia in children. This program is expected to significantly reduce morbidity and 

mortality from pneumonia [4]. 

 Building on the role of immunization, a toddler’s immunization status also plays a significant role in 

the incidence of pneumonia.  a relationship between nutritional status, immunization status, and the 

incidence of pneumonia in infants. Toddlers with poor nutritional status are at higher risk of developing 

pneumonia due to weakened immune systems [5]. 

In addition to immunization and nutrition, early feeding practices can further influence a child’s 

susceptibility to the disease. Exclusive breastfeeding is one of the most significant protective factors in 

preventing pneumonia in toddlers. There is a significant negative association between exclusive 

breastfeeding and the incidence of pneumonia in toddlers. Exclusive breastfeeding provides optimal 

protection against various infectious diseases, including pneumonia, because it contains antibodies and 

immune substances essential for protecting infants from harmful pathogens [6]. 

Another critical factor that intersects with these vulnerabilities is the condition at birth. Low birth 

weight (LBW) is defined as a baby born weighing less than 2,500 grams, regardless of age. This 

condition is a significant factor in increasing infant mortality, morbidity, and disability, and has long-

term impacts on their future lives. Low birth weight babies have immature immune systems and 

underdeveloped organs, making them more susceptible to respiratory infections, including pneumonia. 

Low birth weight (LBW) is one of the factors examined for its association with the incidence of 

pneumonia in toddlers. Low birth weight babies have smaller lung capacity and suboptimal respiratory 

function, making them more susceptible to complications when infected with pneumonia-causing 

pathogens.[7]. 

Although pneumonia is a national health problem, the distribution of cases is uneven across 

Indonesia, suggesting that location-specific factors may influence its incidence and thus requiring 

localized modeling to analyze its determinants. These variations arise because each location has specific 

characteristics that influence the number of pneumonia cases. This unevenness is evident in the striking 

differences between islands, provinces, and even districts/cities. One fascinating region to observe is the 

island of Sumatra. In this region, the distribution of pneumonia cases in toddlers shows inequality. For 

example, in 2022, the South Sumatra Provincial Health Office recorded a total of 6,663 cases of 

pneumonia in toddlers, while the Bengkulu Provincial Health Office recorded only 439 cases [8][9]. 

This inequality is also evident at the district/city level; for example, the Health Office report shows that 

in Lahat Regency, Musi Rawas Regency, and Lubuk Linggau City, there were no cases of pneumonia 

in toddlers. At the same time, Palembang City had a very high number of cases, namely 2,838 cases [8].  

Based on this background of national challenges, preventive factors, and regional disparities, this 

study aims to analyze the factors influencing the number of pneumonia cases in toddlers on Sumatra 

Island using a spatial approach. Due to the uneven distribution of pneumonia cases across regions, the 

analytical approach used in this study is Geographically Weighted Poisson Regression (GWPR). This 

approach is expected to capture local variations in the influence of the independent variables considered, 

such as the number of health facilities, the percentage of complete basic immunizations, the percentage 

of exclusive breastfeeding, and the percentage of low birth weight (LBW) infants. The results of this 

study are expected to contribute to the formulation of more targeted health intervention policies, 

particularly in addressing childhood pneumonia on Sumatra Island. 
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2. Research Method 

 

2.1. Poisson  Regression Model 

The Poisson distribution is a key statistical tool for modeling count data, particularly for events that 

occur independently and infrequently within a fixed interval of time or space [10]. For a discrete random 

variable Y with intensity parameter 𝜆, the probability mass function is defined as follows. 

     𝑃(𝑌 = 𝑦|𝜆) =
𝑒−𝜆𝜆𝑦

𝑦!
, 𝑦 = 0, 1, 2, . . . ; 𝜆 ≥ 0       (1) 

From this foundation, the Poisson regression model is developed to relate the expected count 𝐸(𝑌𝑖) to a 

set of independent variables. The natural logarithm of the expected value is expressed as a linear 

combination of independent variables  

      𝑙𝑛(𝐸(𝑌𝑖)) = 𝒙𝑖
𝑇𝜷         (2) 

Here, 𝐱𝑖 = [1, 𝑥1𝑖, 𝑥𝑖2, … , 𝑥𝑝𝑖]
𝑇 represents the vector of independent variables (including an intercept) 

for the 𝑖𝑡ℎ observation, and 𝛃 = [𝛽0, 𝛽1, 𝛽2, … , 𝛽𝑝]
𝑇 denotes the vector of regression coefficients. 

Consequently, the expected count is modeled as 

      𝐸(𝑌𝑖) = 𝜆𝑖 = 𝑒𝑥𝑝(𝒙𝑖
𝑇𝜷)             (3) 

This framework enables the analysis of how various factors influence the occurrence of rare events, such 

as disease incidence, by capturing their effects through the regression coefficients. 

 

2.2. Multicollinearity Detection 

Multicollinearity occurs when two or more independent variables are highly correlated with each other 

[11], which can affect the stability of regression coefficient estimates. One common method used to 

detect multicollinearity is the Variance Inflation Factor (VIF). VIF is a measure that indicates how much 

the variability of regression coefficient estimates increases due to collinearity between independent 

variables in a regression model [12].  

The VIF is calculated for each independent variable in the model and measures the correlation 

between that variable and the other independent variables in the model. The VIF value is obtained using 

the equation 

𝑉𝐼𝐹𝑘 =
1

1 − 𝑅𝑘
2       (4) 

where 𝑅𝑘
2 is the coefficient of determination of the regression of the 𝑘𝑡ℎ independent variable against 

all other independent variables in the model. Values of 𝑉𝐼𝐹 < 5  are generally considered not to cause 

collinearity problems [13]. 

 

2.3. Dispersion Testing 

Dispersion describes the variability in data beyond what is explained by the mean. In Poisson regression, 

it specifically refers to the relationship between the mean and variance of the count data distribution 

[14]. The Poisson model assumes equidispersion, where the variance equals the mean. 

𝑉𝑎𝑟(𝑌) = 𝜇      (5) 

If the variance significantly exceeds the mean, overdispersion occurs, which can compromise the 

model's accuracy. Conversely, underdispersion arises when the variance is less than the mean. In this 

study, we assume the data satisfy the equidispersion assumption. However, this assumption is a 

limitation, and future research could explore alternative models, such as negative binomial regression 

or generalized Poisson regression, to address potential overdispersion or underdispersion. 
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2.4. Spatial Heterogeneity  

Spatial heterogeneity occurs when the relationship between independent and dependent variables varies 

across regions. A key consideration in spatial heterogeneity is determining when differences are 

statistically significant and when they are insignificant, for example, due to small sample sizes [15]. To 

test for spatial heterogeneity, the Lagrangian Multiplier (LM) approach can be used. This test is 

performed by dividing the data into subsets and using Ordinary Least Squares (OLS) regression to test 

the following null hypothesis. 

𝐻0 ∶  𝜎1
2  =  𝜎2

2  = . . . =  𝜎𝑛
2  =  𝜎2  (no spatial heterogenity) 

𝐻1  ∶  𝐴𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑜𝑓 𝜎𝑖
2  ≠  𝜎2 (spatial heterogenity exists) 

 

The LM test statistic is calculated as follows 

𝐿𝑀 =
1

2
𝑓𝑇𝑍(𝑍𝑇𝑍)−1𝑍𝑇;  𝑓~𝜒𝑘

2      (6) 

𝑓 = 𝑓𝑖 = (
𝑒𝑖
2

𝜎2
− 1) (7) 

where 

𝑒𝑖
2 : Squared residual from Ordinary Least Squares (OLS) regression for the 𝑖𝑡ℎ observation. 

Z : An (𝑛 × (𝑘 + 1)) matrix of normalized covariate vectors for each observation. 

𝜎2 : The common variance under the null hypothesis. 

  

The null hypothesis 𝐻0 is rejected if the LM test statistic exceeds the critical value of the chi-square 

distribution with 𝑘 degrees of freedom or if the p-value is less than the significance level 𝛼, indicating 

the presence of spatial heterogeneity across regions. 

 

2.5. Spatial Weighting Matrix 

A spatial weighting matrix, as described by LeSage [16], is an 𝑛 × 𝑛 matrix that quantifies the spatial 

relationships between observational units, typically based on either contiguity or a distance-based 

function between locations. This matrix is critical in spatial models like Geographically Weighted 

Poisson Regression (GWPR) to account for spatial dependencies. Commonly used kernel functions for 

constructing the spatial weighting matrix include the following [17] 

1) Gaussian Kernel Function 

The Gaussian kernel assigns weights to all observations, with weights decreasing exponentially as 

the distance from the focal point increases, approaching but never reaching zero. The Gaussian 

kernel is defined as 

𝑤(𝑑𝑖𝑗) = 𝑒𝑥𝑝(−
1

2
(
𝑑𝑖𝑗

ℎ
)

2

)     (8) 

where 

𝑑𝑖𝑗 : The distance between location i and location j. 

h : The bandwidth, controlling the spatial range of influence. 

 

2) Bi-Square Kernel Function 

The bi-square kernel assigns weights that decrease with distance but drop to zero beyond a specified 

bandwidth, making it suitable for local analyses with a defined spatial extent. The bi-square kernel 

is expressed as  
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𝑤(𝑑𝑖𝑗) = {
(1 − (

𝑑𝑖𝑗

ℎ
)

2

)

2

, if |𝑑𝑖𝑗| < ℎ

0, others

      (9) 

  

Two approaches to kernel selection are fixed and adaptive kernels. In a fixed kernel, the bandwidth 

h is constant across all locations, resulting in a uniform spatial influence area for each point. Conversely, 

in an adaptive kernel, the bandwidth adjusts based on the number of neighboring observations, 

expanding in areas with lower observation density and contracting in denser areas to ensure a consistent 

number of neighbors  [17]. 

 

2.6. Geographically Weighted Poisson Regression (GWPR) Model 

Geographically Weighted Regression (GWR) is a spatial analysis technique designed to detect spatial 

nonstationarity, where relationships between variables vary across geographic locations [20]. Unlike 

global regression models, which assume uniform relationships across space, GWR estimates location-

specific parameters, revealing local patterns that may be obscured in traditional models. This approach 

incorporates spatial information, such as location coordinates and independent variable attributes, to 

produce regression coefficients that vary by region, enabling spatially nuanced analysis of factors like 

pneumonia incidence across Sumatra. The GWR model for a given location is mathematically expressed 

as  

𝑦𝑖 = 𝛽0(𝑢𝑖, 𝑣𝑖) +∑𝛽𝑘(𝑢𝑖, 𝑣𝑖)𝑥𝑖𝑘

𝑝

𝑘=1

+ 𝜀𝑖;  𝑖 = 1,2, . . . , 𝑛      (10) 

where 

𝑦𝑖 : The dependent variable at location i. 

𝑥𝑖𝑘 : The value of the 𝑘𝑡ℎ independent variable at location i. 

𝛽0(𝑢𝑖, 𝑣𝑖) : The intercept at location i with coordinates (𝑢𝑖, 𝑣𝑖). 
𝛽𝑘(𝑢𝑖, 𝑣𝑖) : The regression coefficient for the 𝑘𝑡ℎ independent variable at location i. 
(𝑢𝑖, 𝑣𝑖) : The geographic coordinates of location i. 

𝜀𝑖 : The residual for location i. 

 

Geographically Weighted Poisson Regression (GWPR) extends GWR to accommodate count data 

following a Poisson distribution, making it suitable for modeling outcomes like the number of 

pneumonia cases [21]. GWPR allows regression coefficients to vary spatially, capturing local variations 

in the relationship between the dependent variable and independent variables, such as health facility 

availability or immunization rates. The GWPR model is formulated as  

𝜆𝑖(𝑢𝑖, 𝑣𝑖) = exp(𝛽0(𝑢𝑖, 𝑣𝑖) +∑𝛽𝑘(𝑢𝑖, 𝑣𝑖)𝑥𝑖𝑘

𝑝

𝑘=1

)      (11) 

where 𝜆𝑖(𝑢𝑖, 𝑣𝑖) is the expected count (mean of the Poisson distribution) at location i. This formulation 

enables the GWPR model to estimate spatially varying effects, providing insights into how factors 

influence pneumonia incidence differently across regions like Sumatra. 

 

2.7. Model Evaluation 

Evaluating the performance of spatial models like GWPR involves assessing how well the model 

balances predictive accuracy and complexity, particularly when calibrating spatial parameters such as 

bandwidth [17]. A primary metric for this purpose is the Corrected Akaike Information Criterion (AICc), 
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which adjusts the standard AIC to account for small sample sizes, preventing overfitting. The AICc is 

calculated as follows [18] 

        𝐴𝐼𝐶𝑐 =  𝐴𝐼𝐶 +
(2𝑝(𝑝+1))

(𝑛−𝑝−1)
           (12) 

AIC =  −2𝑙𝑛(𝐿)  +  2𝑝      (13) 

where 

p : The number of parameters estimated in the model. 

n : The sample size. 

L : The maximum likelihood of the model. 

 

The AICc penalizes complex models more heavily than AIC, especially for smaller datasets, ensuring 

a balance between explanatory power and parsimony. In the context of GWPR for analyzing pneumonia 

cases across Sumatra, a lower AICc indicates a model that effectively captures spatial variations while 

avoiding overfitting. 

Another goodness-of-fit measure is the Bayesian Information Criterion (BIC), proposed by Schwarz 

(1978) [19], defined as 

BIC = −2𝑙𝑛(𝐿) + 𝑝 𝑙𝑛(𝑛)      (14) 

A lower BIC value signifies a better-fitting model, with BIC imposing a stronger penalty on complexity 

due to the logarithmic sample size term, favoring simpler models compared to AICc. While both metrics 

evaluate model performance, BIC prioritizes parsimony, whereas AICc allows more flexibility for 

including additional variables, which is advantageous in complex spatial analyses. 

The best model was selected using the corrected Akaike Information Criterion (AICc). AICc is a 

modification of AIC that imposes an additional penalty for models with a large number of parameters, 

especially when the sample size is relatively small. The AICc measure for model evaluation is calculated 

similarly to Equation (13). 

To further assess how well the GWPR model explains variation in the data, the percent deviance 

explained is used, as formulated below 

%Deviance explained = (1 −
Deviance Model

Deviance Null
)  ×  100      (15) 

Here, model deviance represents the deviance of the fitted GWPR model, calculated based on the log-

likelihood of the model with the estimated parameters. Null deviance corresponds to the deviance of a 

baseline model, which includes only the intercept (i.e., a model assuming a constant mean without 

independent variables). A higher percentage of deviance explained indicates that the model captures a 

greater proportion of the variability in the data, reflecting better fit. In the context of this study, this 

metric quantifies how effectively the GWPR model accounts for spatial patterns in pneumonia incidence 

across Sumatra. 

 

2.8. Operatiional Definition of Variables 

This study utilizes secondary data sourced from BPS-Statistics Indonesia and Provincial Health Offices 

across Sumatra, covering all 154 districts/cities on the island. The data are cross-sectional, collected for 

the year 2022, with the district/city level as the unit of analysis. The study includes one dependent 

variable and four independent variables, as outlined in Table 1.  

Table 1. Operatiional definition of variables. 

Variable Unit Definition Source 

Number of pneumonia cases 

in toddlers (𝑌) 
Count The number of reported pneumonia cases among 

toddlers (children aged 1 to less than 5 years) in 2022. 

Provincial 

Health Office 

Number of health centers 
(𝑋1) 

Count The total number of community health centers 

(Puskesmas) providing primary healthcare services. 

BPS-Statistics 

Indonesia 
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Percentage of complete basic 

immunization (𝑋2) 
Percent The proportion of children receiving complete basic 

immunizations, protecting against diseases such as 

tuberculosis, diphtheria, pertussis, tetanus, polio, 

hepatitis B, and measles. 

Provincial 

Health Office 

Percentage of exclusive 

breastfeeding (𝑋3) 
Percent The proportion of infants receiving only breast milk, 

without additional food or drink (except medically 

necessary supplements, such as medicines or vitamins 

in liquid form), for the first six months of life. 

Provincial 

Health Office 

Percentage of low birth 

weight (𝑋4) 
Percent The proportion of infants born weighing less than 2,500 

grams, regardless of gestational age. 

Provincial 

Health Office 

 

3. Result and Discussion 

 

3.1. Overview of Pneumonia Cases in Toddlers on Sumatra Island 

Table 2 summarizes the descriptive statistics of the variables used to analyze pneumonia cases in 

toddlers (children aged 1 to less than 5 years) across districts/cities on Sumatra Island in 2022. Among 

the variables, the percentage of low birth weight (LBW) and the number of community health centers 

(Puskesmas) exhibited the lowest variability, with averages of 4.04% (standard deviation: 5.32) and 

17.53 units (standard deviation: 9.31), respectively. This suggests relatively uniform distributions of 

these factors across regions. In contrast, the number of pneumonia cases in toddlers showed substantial 

variability, with an average of 220.20 cases per district/city and a standard deviation of 476.21, 

indicating significant interregional differences in disease burden. 

Tabel 2. Summary of descriptive statistics. 

Variable Maximum Minimum    Average Std. Dev. 

Number of pneumonia cases in toddlers (𝑌) 2838 0 220.20 476.21 

Number of health centers (𝑋1) 51 0 17.53 9.31 

Percentage of complete basic immunization (𝑋2) 131.31 0 77.82 26.59 

Percentage of exclusive breastfeeding (𝑋3) 92.9 8.080 55.64 21.01 

Percentage of low birth weight (𝑋4) 34.1 0 4.04 5.32 

  

The spatial distribution of pneumonia cases in toddlers on Sumatra Island is illustrated in Figure 1. 

Cases are predominantly concentrated in the southern region, with notable clusters in central and eastern 

Sumatra. Palembang City and Batam City recorded the highest incidences, with 2,838 and 2,765 cases, 

respectively, in 2022. In contrast, several districts, particularly in North Sumatra Province, reported zero 

cases. This uneven distribution highlights significant regional disparities in pneumonia prevalence, 

likely influenced by variations in healthcare access, socioeconomic conditions, and environmental 

factors. 



 

 
     
   753  
 

 

R N S L Gaol et al 

 

Figure 1. Distribution of pneumonia cases in toddlers, Sumatra Island, 2022. 

3.2. Determinants of Pneumonia Cases in Toddlers 

Prior to fitting the Poisson regression model, a multicollinearity test was conducted to ensure the 

independence of the predictor variables. Table 3 presents the Variance Inflation Factor (VIF) values, all 

of which are below 5, indicating no significant multicollinearity that could bias the model’s estimates. 

Table 3. VIF for multicollinearity assessment. 

Variable VIF 

Number of health centers (𝑋1) 1.0217 

Percentage of complete basic immunization (𝑋2) 1.0076 

Percentage of exclusive breastfeeding (𝑋3) 1.0203 

Percentage of low birth weight (𝑋4) 1.0477 

 

The parameter estimates from the global Poisson regression model are shown in Table 4, with the 

model expressed as 

𝜆̂ = 𝑒𝑥𝑝(4,2987 − 0,0090 𝑋1
∗ − 0,0050 𝑋2

∗ + 0,0306 𝑋3
∗ − 0,0640𝑋4

∗)   (16) 

All independent variables were statistically significant at the 5% significance level (𝛼 = 0.05). For 

instance, adding one community health center (𝑋1) reduces the expected number of pneumonia cases in 

toddlers by a factor of 0.9910 (odds ratio), holding other variables constant. Similarly, higher 

percentages of complete basic immunization (𝑋2) and low birth weight (𝑋4) are associated with reduced 

pneumonia cases, while a higher percentage of exclusive breastfeeding (𝑋3) is associated with an 

increase, possibly reflecting regional confounding factors or data-specific patterns. 

Table 4. Parameter estimates for the global Poisson regression model. 

Variable Est. SE z-stat Odds Ratio 

Intercept 4.2987 0.0292 147.1433* 73.6077 
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Number of health centers (𝑋1) -0.0090 0.0007 -13.5180* 0.9910 

Percentage of complete basic immunization (𝑋2) -0.0050 0.0002 -26.7294* 0.9950 

Percentage of exclusive breastfeeding (𝑋3) 0.0306 0.0003 92.0348* 1.0311 

Percentage of low birth weight (𝑋4) -0.0640 0.0014 -45.4254* 0.9380 

*) Significant at 𝛼 = 0.05 

3.3. Spatial Heterogeneity Assessment 

To determine whether the relationships between the independent variables and pneumonia cases in 

toddlers vary across Sumatra, a spatial heterogeneity test was conducted. Table 5 presents the results of 

the Breusch-Pagan (BP) test, which yielded a statistically significant p-value (0.0471) at the 5% level, 

rejecting the null hypothesis of spatial homogeneity. This confirms the presence of spatial heterogeneity, 

justifying the use of a spatially varying model like GWPR. 

Tabel 5. Spatial heterogeneity test results. 

Spatial effect BP-Test Statistic p-value 

Heteroscedasticity 9.6323 0.0471 

 

3.4. Comparison of Weighting Functions in GWPR 

In developing the GWPR model, various weighting functions were evaluated to identify the most 

optimal configuration. Table 6 compares the performance of fixed and adaptive kernel functions based 

on the Corrected Akaike Information Criterion (AICc) and Bayesian Information Criterion (BIC). The 

fixed Gaussian kernel produced the lowest AICc (33,907.04) and BIC (33,992.69) with an optimal 

bandwidth of 1.156, indicating superior model fit. Consequently, this kernel was selected for subsequent 

spatial analyses. 

Table 6. Comparison of weighting functions in GWPR models. 

Model AICc BIC Bandwidth 

Adaptive bisquare 37,200.94 37,275.56 50.8456 

Adaptive Gaussian  60,123.29 60,154.88 50.8456 

Fixed bisquare 56,661.86 56,704.75 5.7994 

Fixed Gaussian 33,907.04 33,992.69 1.156 

 

3.5. Model Comparison: Global vs. Local   

To assess whether the GWPR model outperforms the global Poisson regression model, a comparison 

was made using AICc and percent deviance explained, as shown in Table 7. The GWPR model with the 

fixed Gaussian kernel yielded a significantly lower AICc (33,907.0366 vs. 69,824.4110) and a higher 

percent deviance explained (58.59% vs. 14.51%) compared to the global model. These results indicate 

that the increased complexity of the GWPR model is justified by its superior ability to capture spatial 

variations in pneumonia incidence. 

Table 7. Comparison of global and local models. 

Model AICc Percent deviance explained  

Global Poisson regression 69,824.411 14.51% 

GWPR (Fixed Gaussian kernel) 33,907.0366 58.59% 

 

3.6. Spatial Analysis of GWPR Parameter Estimates  

The parameter estimates from the GWPR model with the fixed Gaussian kernel are summarized in Table 

8. The percentage of exclusive breastfeeding (𝑋3) exhibits a positive influence on pneumonia cases 
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across all districts/cities, suggesting a complex relationship that may reflect regional socioeconomic or 

health reporting factors. Conversely, the number of community health centers (𝑋1), percentage of 

complete basic immunization (𝑋2), and percentage of low birth weight (𝑋4) generally show negative 

associations with pneumonia cases in most regions, though their effects vary spatially, reflecting local 

differences in healthcare infrastructure and population characteristics. 

Table 8. Summary of parameter estimates for the fixed Gaussian kernel GWPR model. 

Variable Mean    St. Dev. Minimum      Median Maximum 

Intercept 4.7712 3.3512 -31.1389 5.1131 8.0077 

Number of health centers (𝑋1) -0.0227 0.0507 -0.1858 -0.0159 0.0814 

Percentage of complete basic immunization 
(𝑋2) 

-0.0060 0.0324 -0.0457 -0.0104 0.3543 

Percentage of exclusive breastfeeding (𝑋3) 0.0288 0.0238 0.0024 0.0227 0.2090 

Percentage of low birth weight (𝑋4) -0.1322 0.2611 -0.8460 -0.0431 0.2147 

 

Figure 2 illustrates the spatial distribution of districts/cities on Sumatra Island grouped by 

combinations of significant variables influencing pneumonia cases in toddlers (aged 1 to less than 5 

years) in 2022, based on the fixed Gaussian kernel GWPR model. The majority of areas, comprising 

140 districts/cities, fall into a dominant group (Group 1) where all independent variables—number of 

community health centers (𝑋1), percentage of complete basic immunization (𝑋2), percentage of 

exclusive breastfeeding (𝑋3), and percentage of low birth weight (LBW) (𝑋4)—are statistically 

significant at the 5% level. This widespread significance highlights the critical role of healthcare 

infrastructure, preventive behaviors, and birth-related factors in explaining spatial variations in 

pneumonia incidence across most of Sumatra. 

Four smaller groups, totaling 14 locations, exhibit distinct combinations of significant variables, 

indicating localized deviations from the dominant pattern. For instance, Rejang Lebong Regency in 

Bengkulu Province (Group 5) is unique, with only the percentage of complete basic immunization (𝑋2) 
and exclusive breastfeeding (𝑋3) showing significant effects. In this rural area, the lack of significance 

for community health centers (𝑋1) and LBW (𝑋4) may reflect limited healthcare infrastructure or 

underreporting of LBW cases, emphasizing the prominence of immunization and breastfeeding as key 

drivers of pneumonia incidence. The complete grouping of districts/cities based on significant variables, 

as depicted in Figure 2, is detailed in Table 9.  

 

3.7. Local Model Interpretation: Case of Palembang City 

The GWPR model yields location-specific parameter estimates, reflecting the spatial heterogeneity in 

factors influencing pneumonia cases in toddlers across Sumatra. As an example, the model for 

Palembang City—where the highest number of pneumonia cases (2,838) was recorded in 2022—is 

formulated as 

𝜆̂ =  𝑒𝑥𝑝( 5,8696 − 0,0131 𝑋1
∗ − 0,0078 𝑋2

∗ + 0,0137 𝑋3
∗ − 0,0380 𝑋4

∗)      (19) 

All independent variables are statistically significant at the 5% level ($\alpha = 0.05$) in Palembang 

City, indicating their collective role in explaining local pneumonia incidence. Specifically, an increase 

of one community health center (𝑋1) is associated with a reduction in the expected number of 

pneumonia cases by a factor of exp(−0.0131) = 0.9870, holding other variables constant. This 

underscores the vital role of accessible primary healthcare facilities in urban settings like Palembang, 

where high population density can strain resources but also amplify the impact of expanded services in 

preventing respiratory infections. 
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Figure 2. Spatial grouping of districts/cities based on significant variables in the fixed Gaussian kernel 

GWPR model. 

Similarly, a 1% increase in complete basic immunization coverage (𝑋1) is linked to a decrease in 

expected pneumonia cases by a factor of exp(−0.0078) = 0.9922, assuming other factors remain 

unchanged. Idealistiana (2025) found that providing immunization to infants and toddlers has been 

proven effective in reducing the number of cases of pneumonia [22]. This also aligns with evidence 

from recent studies in Indonesia, which demonstrate that full immunization schedules, including 

vaccines against pneumococcal and Haemophilus influenzae type b (Hib) pathogens, significantly lower 

pneumonia morbidity in toddlers [23]. 

Unexpectedly, a 1% increase in exclusive breastfeeding rates (𝑋3) is associated with a slight increase 

in expected pneumonia cases by a factor of exp(0.0137) = 1.0138, holding other variables constant. 

While exclusive breastfeeding is generally protective against infectious diseases, including pneumonia, 

this positive association may arise from confounding factors such as environmental exposures in urban 

Palembang. For instance, despite high breastfeeding rates, toddlers may face heightened risks from poor 

air quality due to industrial pollution, traffic emissions, and seasonal haze from nearby peatland fires, 

which exacerbate respiratory vulnerabilities [24] [25]. Recent analyses in Indonesia highlight that non-

exclusive or suboptimal breastfeeding practices, combined with urban environmental stressors, can 

diminish protective effects and even correlate with increased ARI incidence in polluted areas [26]. This 

finding emphasizes the need for integrated interventions that pair breastfeeding promotion with 

environmental improvements, such as stricter air quality regulations in densely populated cities like 

Palembang. 

Conversely, a 1% increase in the low birth weight (LBW) rate (𝑋4) is associated with a decrease in 

expected pneumonia cases by a factor of exp(−0.038) = 0.9627, assuming other variables are held 

constant. Although LBW is typically a risk factor for pneumonia due to immature immune systems and 
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respiratory complications, this counterintuitive negative association may stem from heightened medical 

attention and early interventions for LBW infants in urban healthcare systems. In Palembang, LBW 

toddlers often receive intensive monitoring, nutritional support, and prompt treatment, which could 

mitigate infection risks more effectively than in general populations [27]. Evidence from Indonesian 

studies supports this, noting that targeted care for LBW infants at primary health centers can reduce 

acute respiratory infection (ARI) prevalence through enhanced surveillance and vaccination adherence 

[28]. However, this highlights a potential selection bias, where LBW cases are more likely to be 

documented and managed, underscoring the importance of preventive measures like prenatal nutrition 

programs to address LBW root causes. 

 

Table 9. Grouping of districts/cities based on combinations of significant variables in the fixed 

Gaussian kernel GWPR model. 

Group Significant variables Total District/City 

1 𝑋1, 𝑋2, 𝑋3, 𝑋4 140 Simeulue, Aceh Singkil, Aceh Selatan, Aceh Tenggara, Aceh Timur, 

Aceh Besar, Aceh Barat, Aceh Tengah, Pidie, Bireuen, Aceh Utara, 

Aceh Barat Daya, Gayo Lues, Aceh Tamiang, Nagan Raya, Aceh 

Jaya, Bener Meriah, Pidie Jaya, Langsa, Lhokseumawe, 

Subulussalam, Nias, Mandailing Natal, Tapanuli Selatan, Tapanuli 

Utara, Tapanuli Tengah, Toba, Asahan, Simalungun, Dairi, Karo, Deli 

Serdang, Langkat, Humbang Hasundutan, Pakpak Bharat, Samosir, 

Serdang Bedagai, Batu Bara, Labuhanbatu Selatan, Labuhanbatu 

Utara, Nias Utara, Nias Barat, Sibolga, Tanjung Balai, Pematang 

Siantar, Tebing Tinggi, Medan, Binjai, Padang Sidempuan, 

Kepulauan Mentawai, Pesisir Selatan, Regency Solok, Sijunjung, 

Padang Pariaman, Agam, Lima Puluh City, Pasaman, Solok Selatan, 

Dharmasraya, Pasaman Barat, City Padang, City Solok, Sawahlunto, 

Padang Panjang, Bukittinggi, Payakumbuh, Pariaman, Indragiri Hulu, 

Indragiri Hilir, Pelalawan, Siak, Kampar, Rokan Hulu, Bengkalis, 

Rokan Hilir, Kepulauan Meranti, Pekanbaru, Dumai, Kerinci, 

Merangin, Sarolangun, Batanghari, Muaro Jambi, Tanjung Jabung 

Timur, Tanjung Jabung Barat, Tebo, Bungo, Jambi,  Sungai Penuh, 

Ogan Komering Ulu, Ogan Komering Ilir, Muara Enim, Lahat, Musi 

Rawas, Musi Banyuasin, Banyuasin, Ogan Komering Ulu Selatan, 

Ogan Ilir, Empat Lawang, Penukal Abab Lematang Ilir, Musi Rawas 

Utara, Palembang, Prabumulih, Pagar Alam, Lubuk Linggau, 

Bengkulu Selatan, Bengkulu Utara, Kaur, Seluma, Muko Muko, 

Lebong, Kepahiang, Bengkulu, Lampung Barat, Tenggamus, 

Lampung Selatan, Lampung Timur, Lampung Tengah, Lampung 

Utara, Way Kanan, Tulang Bawang, Pesawaran, Pringsewu, Mesuji, 

Tulang Bawang Barat, Pesisir Barat, Bandar Lampung, Metro, 

Bangka, Bangka Barat, Bangka Tengah, Bangka Selatan, Belitung 

Timur, Pangkal Pinang, Karimun, Bintan, Natuna, Lingga, Kepulauan 

Anambas, Tanjung Pinang 

2 𝑋1, 𝑋2, 𝑋3 7 Banda Aceh, Sabang, Labuhanbatu, Nias Selatan, Padang Lawas 

Utara, Gunungsitoli, Bengkulu Tengah  

3 𝑋1, 𝑋3, 𝑋4 3 Padang Lawas, Tanah Datar, Belitung 

4 𝑋2, 𝑋3, 𝑋4 3 Kuantan Singingi, Ogan Komering Ulu Timur, Batam 

5 𝑋2, 𝑋3 1 Rejang Lebong 

 

4. Conclusion 

In 2022, pneumonia cases in toddlers (aged 1 to less than 5 years) across Sumatra’s 154 districts/cities 

averaged 220.20 cases per district/city, with significant regional disparities, notably high incidences in 
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urban centers like Palembang (2,838 cases) and Batam (2,765 cases). The Geographically Weighted 

Poisson Regression (GWPR) model with a fixed Gaussian kernel proved optimal for capturing spatial 

variations, revealing that most areas (140 locations) were significantly influenced by all predictors—

number of community health centers, complete basic immunization, exclusive breastfeeding, and low 

birth weight (LBW)—while 14 locations showed unique combinations, highlighting the need for 

localized interventions to address diverse regional drivers of pneumonia. 

Stakeholders should prioritize tailored interventions, such as expanding health centers in urban high-

incidence areas, implementing mobile immunization units in rural regions like Rejang Lebong, and 

addressing environmental risks (e.g., air pollution from peatland fires) to enhance breastfeeding benefits. 

Future research should explore negative binomial models to address potential overdispersion, 

incorporate temporal and microbial data, and include socioeconomic covariates to better understand 

regional disparities. The full set of 154 location-specific GWPR model results, including parameter 

estimates, is available upon request from the corresponding author. Requests should include clear 

reasons for access, such as policy development or academic research. 
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