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Abstract: Java Island, Indonesia’s economic and population hub, faces intense environmental
pressure from CO: concentration, exhibiting strong spatial dependence across its 118 regencies
and cities. This study examines the determinants of CO- concentration and their spillover effects
using an extended STIRPAT framework and a Spatial Autoregressive (SAR) model, applied to
2024 secondary data from BPS-Statistics Indonesia and Google Earth Engine (GEE). The SAR
model outperforms OLS, with lower AIC (364.8979 vs. 489.0563) and BIC (387.0634 vs.
508.4551), confirming spatial effects. In SAR models, interpretation relies on decomposing
estimated coefficients into direct effects (impacts within a region) and indirect or spillover effects
(impacts transmitted to neighboring regions), allowing a more nuanced understanding of spatial
influence. Population density and manufacturing sector GRDP increase emissions, while NDVI
and HDI reduce them. Population density and manufacturing sector GRDP increase
concentration, while NDVI and HDI reduce them. Notably, indirect (spillover) effects
consistently surpass direct effects, driven by commuter flows in urban hubs like Jabodetabek and
industrial pollution spillovers. These findings inform regional climate strategies, emphasizing
cross-regency reforestation and emission controls to support Indonesia’s Enhanced Nationally
Determined Contribution (ENDC) goals.

Keyword: Carbon Concentration, Java Island, Spatial Autoregressive Model, Spatial
Dependence, STIRPAT Model.

1. Introduction

Carbon dioxide (CO-) is a dominant greenhouse gas (GHG) driving climate change, primarily emitted
through human activities intensified by economic growth and industrialization. These concentration
stem largely from the combustion of fossil fuels—such as coal, petroleum, and natural gas—used in
energy, transportation, and industrial sectors. In ASEAN countries, CO- concentration rose significantly
from 1971 to 2019 [1], reflecting heavy reliance on fossil-based energy to meet economic and societal
demands. Globally, CO: accounts for approximately 76% of GHG concentration when weighted by
global warming potential, though this varies by region and sector [2]. By amplifying the greenhouse
effect, CO: accelerates global warming, leading to severe environmental impacts, including melting
polar ice caps, rising sea levels, and more frequent extreme weather events like floods, droughts, and
heatwaves, which also threaten biodiversity through habitat degradation and species population declines
[2].Samosir et al. noted that mitigating CO- concentration is critical to achieving several Sustainable
Development Goals (SDGs) [3]. These include SDG 6 (Clean Water and Sanitation), emphasizing
access to clean water and sanitation; SDG 11 (Sustainable Cities and Communities), promoting
sustainable urban environments; SDG 13 (Climate Action), advocating for climate-resilient
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technologies; and SDGs 14 and 15 (Life Below Water and Life on Land), focusing on marine and
terrestrial ecosystem preservation. In Indonesia, a major contributor to Southeast Asia’s concentration,
these goals are particularly relevant. The government has committed to reducing GHG concentration by
31.89% independently and up to 43.20% with international support by 2030, relative to a business-as-
usual scenario, as outlined in its Enhanced Nationally Determined Contribution (ENDC) [4]. These
targets are supported by policies like Presidential Regulation No. 98 of 2021, which establishes a carbon
economic value framework, and Government Regulation No. 22 of 2021, which mandates
environmental management and GHG emission reductions [5].

With a population exceeding 270 million—the world’s fourth largest—Indonesia faces escalating
energy demands driven by rapid growth in its industrial, construction, and transportation sectors [6].
However, reliance on fossil fuels, coupled with deforestation and land conversion for agriculture or
settlements, significantly contributes to CO. concentration. On Java Island, which houses over half of
Indonesia’s population and serves as an economic hub, CO: concentration exhibit spatial
interdependence. Economic activities such as commuter flows, logistics networks, and industrial
expansion create spillover effects, where CO: concentrations in one regency influence air quality in
neighboring areas due to pollution diffusion or cross-boundary activities [3,7]. This spatial dynamic
underscores the need for targeted, spatially informed mitigation strategies.

Previous studies have leveraged the STIRPAT (Stochastic Impacts by Regression on Population,
Affluence, and Technology) framework with spatial econometric models to analyze CO: concentration.
For instance, Zhu and Lin (2025) [8] used an extended STIRPAT model to examine livelihood
development’s impact on CO: concentration in China’s Yangtze River Delta, highlighting spatial
spillovers. Similarly, Lu et al. (2020) [9] applied spatial analysis to identify determinants of carbon
concentration in China’s construction industry, revealing significant spatial autocorrelation. Liu and
Song (2020) [10] employed a spatial Durbin model to assess financial development’s effect on CO-
concentration in China, emphasizing spatial dependencies. Liu and Han (2021) [11] extended STIRPAT
to study urbanization and technology impacts on concentration in the Yangtze River Economic Belt,
while Weng et al. (2023) [12] used a spatial Durbin model to explore clean energy investment’s role in
reducing CO: concentration. In Indonesia, Samosir et al. (2024) [3] analyzed spatial dependencies in
environmental quality, providing a foundation for regional studies. These studies demonstrate the
efficacy of combining STIRPAT with spatial econometric approaches, such as the Spatial
Autoregressive (SAR) model, in capturing local and spillover effects in densely populated regions like
Java.

This study aims to identify the key factors influencing CO: concentration in Java’s regencies/cities
using an extended STIRPAT model with a Spatial Autoregressive (SAR) estimation approach. By
analyzing local drivers, it informs targeted mitigation strategies, such as reducing urban pollution and
coordinating cross-regency reforestation to lower CO: concentrations. These findings contribute to
Indonesia’s climate mitigation goals and sustainable development strategies.

This study aims to identify the key factors influencing CO- concentrations in Java’s regencies and
cities using an extended STIRPAT model with a Spatial Autoregressive (SAR) estimation approach. By
analyzing local drivers (e.g., population density, industrial activity) and assessing spillover effects on
neighboring regions, it informs targeted mitigation strategies, such as reducing urban pollution and
coordinating cross-regency reforestation to lower CO: concentrations. These findings contribute to
Indonesia’s climate mitigation goals and sustainable development strategies [5,16].

2. Research Method

2.1. Conceptual Framework

This study employs the STIRPAT (Stochastic Impacts by Regression on Population, Affluence, and
Technology) model, developed by Dietz and Rosa [13], to analyze the factors influencing CO-
concentration in regencies and cities across Java Island. The STIRPAT model builds on the IPAT
identity (Impact = Population x Affluence x Technology), introduced by Ehrlich and Holdren [14]. The
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IPAT identity posits that environmental impact (I) results from the interaction of population (P),
affluence (A), and technology (T), expressed as

I =PXAXT @Y

However, the IPAT identity is deterministic, assuming a proportional linear relationship that limits its
use in quantitative regression analysis. To address this, the STIRPAT model reformulates IPAT into a
stochastic framework suitable for logarithmic regression, with the basic formulation

I = axPPxAXTE x e (2)

where I; represents environmental impact (e.g., CO: concentration, pollution, resource depletion) in
region i, P;, A;, and T; denote population, affluence, and technology, respectively, a is a scaling constant,
b, c, and d are exponents measuring the elasticity of each factor, and e; is the error term. For regression
analysis, the model is log-transformed as

In(I;) = In(a) + bIn(P;) + cIn(4;) + dIn(T;) + In(e;). 3)

The STIRPAT model is flexible, allowing the inclusion of additional socioeconomic or ecological
variables relevant to the study context. In this research, the model is extended to incorporate variables
such as population density, economic growth, industrial contribution, vegetation cover (measured by the
Normalized Difference Vegetation Index, NDVI), and the number of motor vehicles to capture the
determinants of CO: concentration in Java. Additionally, the Human Development Index (HDI) is used
as a proxy for affluence, as it encompasses education, health, and living standards, reflecting not only
consumption levels but also technological capacity and lifestyle patterns in urban and rural regions [8].
The HDI thus captures the quality of life, which influences energy consumption and CO: concentration.

Given the spatial interdependence among Java’s regencies/cities, driven by factors such as
commuter flows and industrial expansion, this study integrates the STIRPAT model with a Spatial
Autoregressive (SAR) approach. The SAR model accounts for spillover effects, where CO:
concentration in one regency/city may influence neighboring regions [3]. This framework combines
local factors (population, economy, technology) with spatial dynamics to provide a comprehensive
understanding of CO: concentration in Java.

2.2.  Model Estimation Procedure

This study employs the Spatial Autoregressive (SAR) model to analyze the effects of population,
affluence (welfare), and technology—along with other socioeconomic factors—as independent
variables on CO: concentration (the dependent variable), while accounting for spatial effects across
regencies/cities in Java. The SAR model captures spatial autocorrelation in the dependent variable,
allowing for spillover effects where concentration in one regency influence neighboring areas. The
process for building and estimating the SAR model follows a structured sequence of steps, as outlined
below.

Initial Estimation with OLS
Parameters are first estimated using the Ordinary Least Squares (OLS) model, which ignores spatial
effects, to establish a baseline

Y = :BO + Ble + ‘82X2 + ... + ﬁka + ¢ (4)
where:
Y . Dependent variable (CO: concentration).
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X1,X5, ..., X Independent variables (e.g., population density, HDI as a proxy for affluence, industrial
contribution).

Bo, B1, -, By . Estimated parameters.

k : Number of independent variables.

€ . Error term.

Testing for Spatial Autocorrelation

To detect spatial effects, the OLS residuals are tested for spatial autocorrelation using Moran’s I statistic.
A significant p-value (typically < 0.05) indicates spatial dependence, rendering the OLS model
inadequate for unbiased estimation [15]. If spatial autocorrelation is present, a spatial econometric
model is required.

Constructing the Spatial Weight Matrix

The spatial weight matrix (W) is constructed using the queen contiguity approach, which defines
neighboring regions based on shared borders or vertices. This method is well-suited for irregularly
shaped administrative units like regencies/cities in Java and has been effectively applied in prior studies
on emission distributions, such as those examining carbon concentration in China’s construction
industry and SO: concentration in Eastern China [9, 16].

Testing for the Spatial Model Selection

To select between the Spatial Autoregressive Model (SAR) and the Spatial Error Model (SEM),
Lagrange Multiplier (LM) tests are conducted on the OLS residuals. If the LM-Lag test is statistically
significant (p < 0.05) while the LM-Error test is not, the SAR model is chosen, indicating spatial
dependence in the dependent variable (CO: concentration). Conversely, if the LM-Error test is
significant while the LM-Lag test is not, the SEM model is selected, indicating autocorrelation in the
error term. If both LM-Lag and LM-Error tests are significant, Robust LM tests are performed to
determine the dominant model: the model with the higher Robust LM test statistic (SAR or SEM) is
preferred. This approach follows established spatial econometrics guidelines [15].

Specification of the SAR Model
Based on the test results, the SAR model is specified as

n k
Y, = Pz Wi;Y; + inzﬁl + & (5)
=1 =1

Y; 1 CO: concentration in region i.
X;; : Independent variables for region i.
B . Estimated parameters.

n  : Number of observations (regencies/cities).

k  : Number of independent variables.

g . Errorterm.

W;; : Spatial weight matrix element between regions i and j.

p . Spatial autoregressive coefficient, measuring spatial dependence.

Model Evaluation

The model’s goodness-of-fit is evaluated using the Akaike Information Criterion (AIC) and Bayesian
Information Criterion (BIC), which balance explanatory power and model complexity. Lower AIC and
BIC values indicate better model performance. The AIC is calculated as
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AIC = 2k — 2In(L) (6)

where k is the number of parameters and L is the maximized likelihood function [17]. The BIC is given
by

BIC = kln(n) — 2In(L) (6)

where n is the number of observations [18]. These metrics are standard in spatial econometric studies
to ensure model parsimony and robustness [15].

2.3. Data

This study adopts an extended STIRPAT model to analyze the determinants of CO- concentration across
118 regencies/cities in Java, Indonesia, for the year 2024. The STIRPAT framework, building on the
IPAT identity as core drivers of environmental impact, with flexibility to include additional
socioeconomic and ecological variables [10 — 13]. Secondary data for 2024 are sourced from the BPS-
Statistics Indonesia and google earth engine (GEE), covering all regencies and cities in Java except
Kepulauan Seribu Regency, which is excluded because it lacks spatial neighbors due to its location
offshore, disconnected from mainland Java, making it unsuitable for the SAR model’s contiguity-based
spatial weight matrix.

The CO: concentration data were derived from the Sentinel-5 Precursor (Sentinel-5P) satellite using
datasets available on Google Earth Engine (GEE). This product measures atmospheric carbon monoxide
(CO) column number density, which serves as a proxy for near-surface CO. concentration. The dataset
provides daily global coverage with a spatial resolution of approximately 7 x 7 km, enabling detailed
spatial differentiation of air quality and emission patterns. For this study, data were filtered for the period
from January 1 to December 31, 2024, and averaged to produce an annual mean concentration map over
Java. Mean values were then extracted at the regency/city level using zonal statistics within GEE.

Although CO and CO: are chemically distinct gases, CO is commonly used as a proxy for
combustion-related CO: concentrations due to their shared sources and correlated spatial patterns. Both
gases are emitted from fossil fuel combustion, biomass burning, and other anthropogenic activities,
making CO a useful indicator of emission intensity, especially in urban and industrial areas. This
approach is supported by studies such as [19], which demonstrate that satellite-derived CO
concentrations can effectively reflect fossil-fuel CO: emission distributions in regional-scale analyses.

Vegetation indicators were assessed using the Normalized Difference Vegetation Index (NDVI),
computed from Landsat 8 Collection 2 Level-2 Surface Reflectance data. NDVI was calculated using
the red (Band 4) and near-infrared (Band 5) bands with the formula: (NIR — RED) / (NIR + RED). The
dataset was filtered for July 2024, representing the dry season in Java, to minimize cloud contamination.
Only scenes with less than 10% cloud cover were included. A median composite was generated to reduce
noise, and NDV I values were aggregated to the regency/city level using mean zonal statistics. This index
reflects vegetation density and health, which indicates the land’s potential to absorb carbon and mitigate
CO:2 concentrations.

Table 1. Variable definitions.

Description Measurement Unit Source
Total CO: Concentration Total annual CO. concentration g/m3 GEE
Population density Total population divided by area Persons/km? BPS
Vegetation Index (NDVI) Normalized index from NIR and red band Index (-1to 1) GEE

reflectance

Human Development IndexComposite index of life expectancy, Index (0-100) BPS
(HDID) education, and living standards
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Manufacturing Sector GRDP  Percentage of GRDP from the Percent BPS
manufacturing sector
Information and Percentage of GRDP from the information Percent BPS

Communication Sector GRDP and communication sector

The variables used in the extended STIRPAT model are detailed in Table 1, including their
definitions, measurements, units, and sources. Population density represents the population (P)
component, capturing demographic pressure on concentration. The Human Development Index (HDI)
serves as a proxy for affluence (A4), reflecting quality of life through education, health, and living
standards, which influence consumption patterns and energy use [8]. The Gross Regional Domestic
Product (GRDP) of the manufacturing sector (as a percentage of total GRDP) is included as an additional
economic variable, representing industrial activity’s contribution to concentration. The GRDP of the
information and communication sector (as a percentage of total GRDP) proxies technological
advancement, as this sector often drives innovation and efficiency [11]. The Normalized Difference
Vegetation Index (NDVI) is included as an ecological variable, measuring vegetation cover’s role in
carbon sequestration. The number of motor vehicles captures transportation-related concentration, a
significant factor in Java’s urbanized regions.

3. Result and Discussion

3.1.  Spatial Distribution of CO, Concentration

The distribution of CO: concentration across 118 regencies and cities in Java, Indonesia, exhibits
significant spatial variation, as shown in Figure 1. High concentration are concentrated in urban and
industrial hubs, including Greater Jakarta (Jabodetabek), Bandung, and Surabaya, driven by dense
populations and industrial activities. Conversely, lower concentration are observed in rural and less
industrialized areas, particularly in the southern parts of Banten and West Java provinces and the
southern coastal regions of Central and East Java. The thematic map uses color gradation to represent
emission levels, with darker shades indicating higher concentration and lighter shades denoting lower
concentration. The map also reveals clustering patterns, where high-emission regions are often adjacent
to other high-emission areas, suggesting potential spillover effects consistent with spatial dependence.

3.2.  OLS Regression Results

To provide a baseline, multiple linear regression (MLR) was conducted using the ordinary least squares
(OLS) method, ignoring spatial dependence. The results, presented in Table 2, estimate the effects of
population density, NDVI, HDI, Manufacturing Sector GRDP, and Information and Communication
Sector GRDP on CO- concentration.
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CO2 concentration (g/m3)
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M -=35.182 (11)

Figure 1. Map of CO: Emission Distribution.

The OLS results indicate that, at a 5% significance level, the natural logarithm of population
density, NDVI, and HDI significantly influence CO: concentrations, serving as a baseline for
comparison with the Spatial Autoregressive (SAR) model. Higher population density is associated with
increased concentrations, reflecting urban activity, while NDVI (-12.0833) suggests vegetation reduces
concentrations via carbon sequestration [8]. The unexpected negative HDI coefficient (-0.1455) may
indicate efficiency or green policies in high-HDI regions, warranting further investigation. However,
OLS is invalid due to spatial autocorrelation, and the SAR model, which captures spillover effects,
provides reliable estimates (subsection 3.5). Manufacturing and Information Sector GRDP show no
significant effects (p-values > 0.05).

Table 2. Estimated coefficients of the OLS model.

Variable Coefficient Std. Error p-value
Intercept 32.7461 4.2159 0.0000
Population density (In) 1.6043 0.3162 0.0000
NDVI -12.0833 4.3158 0.0060
HDI -0.1455 0.0608 0.0183
Manufacturing sector GRDP 0.0187 0.0123 0.1301
Information and communication sector GRDP -0.0511 0.0793 0.5207

Classical assumption tests were conducted to ensure the OLS model satisfies the Best Linear

Unbiased Estimator (BLUE) criteria, with results presented in Table 3.

Table 3. Results of classical assumption tests for OLS.

Assumption test

Test statistic

p-value

O
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Jarque-Bera test 0.7014 0.7042
Breusch-Pagan test 17.744 0.0033
Durbin-Watson test 0.9782 0.0000
Independent variable VIF
Population density (In) 3.8257
NDVI 2.6117
HDI 3.5508
Manufacturing sector GRDP 1.5353
Information and communication sector GRDP 2.2784

The OLS model meets the normality assumption (Jarque-Bera p-value = 0.7042 > 0.05) and the no-
multicollinearity assumption, as all Variance Inflation Factor (VIF) values are below 5, indicating no
severe collinearity among independent variables. However, the model violates two assumptions: the
Breusch-Pagan test (p-value = 0.0033 < 0.05) confirms heteroskedasticity, indicating non-constant
residual variance, and the Durbin-Watson test (p-value = 0.0000) indicates positive autocorrelation.
These violations suggest that OLS estimates may be inefficient or biased, necessitating a spatial
regression approach to account for spatial dependence.

3.3. Spatial Dependence Analysis

To construct the spatial weight matrix for the SAR model, the number of neighbors for each regency/city
was determined using the queen contiguity method, as shown in Figure 2. On average, each region has
three to four neighbors, but significant variation exists. For example, Bogor Regency, centrally located
with broad geographic coverage, has up to 11 neighbors, while some municipalities have only one. This
diversity in spatial connectivity underscores the need for spatial modeling.

Figure 2. Number of neighbors based on queen contiguity weights.

A randomization test of Moran’s I was conducted to assess spatial dependence in CO:
concentration, with results shown in Figure 3. Using queen contiguity weights, the Moran’s I value is
0.7754, with a z-score of 12.0365 and a pseudo p-value of 0.0010, indicating strong positive spatial
autocorrelation. This means that regions with high CO2 concentration tend to be surrounded by other
high-emission regions, and low-emission regions are adjacent to similar areas, confirming the clustering
observed in Figure 1. The observed Moran’s I (green line) lies far from the reference distribution of 999
permutations, with no permuted values exceeding the observed statistic, providing robust evidence of
spatial dependence.
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Figure 3. Moran’s I of CO: concentration with 999 permutations.

Given the presence of spatial autocorrelation, diagnostic Lagrange Multiplier (LM) tests were
conducted to select the appropriate spatial model, with results presented in Table 4. Both LM lag and
LM error tests are significant at the 5% level (p < 0.05), indicating spatial dependence. However, the
Robust LM lag test remains significant (p = 0.0000), while the Robust LM error test is not (p = 0.8725),
suggesting that the Spatial Autoregressive (SAR) model, which accounts for spatial dependence in the
dependent variable (CO: concentration), is the most appropriate specification [15].

Diagnostic tests confirmed both heteroskedasticity (Breusch-Pagan test, p < 0.05) and spatial
autocorrelation (Moran’s I, p < 0.05) in the data. While Geographically Weighted Regression (GWR)
can address heteroskedasticity by modeling spatially varying coefficients, the LM test indicated that the
SAR model was the most appropriate (robust LM-lag: p < 0.01; robust LM-error: p > 0.05). SAR was
chosen because it explicitly captures spillover effects of CO. concentrations across neighboring
regencies, aligning with the study’s focus on spatial interdependence and regional mitigation strategies.

Table 4. Diagnostic LM tests for spatial dependence.

Diagnostic Test Test statistic p-value
LM lag 102.2504 0.0000
LM error 72.3642 0.0000
Robust LM lag 29.9120 0.0000
Robust LM error 0.0257 0.8725
SARMA 102.2762 0.0000

3.4.  SAR Model Results
The SAR model was estimated to address the spatial dependence and OLS assumption violations,
incorporating the spatial lag of CO: concentration. The results, presented in Table 5, show the estimated
coefficients, standard errors, and p-values for the variables and the spatial autoregressive coefficient
(p). The significant p (0.0765, p = 0.0000) confirms spatial spillover effects, where concentration in
one region are influenced by neighboring regions, highlighting the interconnected nature of
environmental impacts in Java's densely populated and economically integrated landscape.

The SAR model reveals that population density, NDVI, HDI, and manufacturing sector GRDP
significantly influence CO: concentration at the 5% level, while information and communication sector
GRDP remains insignificant. Compared to OLS (Table 2), the SAR model adjusts for spatial bias,
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reducing the magnitude of coefficients (e.g., In(population density) from 1.6043 to 0.5990), suggesting
that OLS overestimated effects due to unaccounted spillovers. The positive coefficient for population
density (0.5990) indicates that a 1% increase in population density raises concentration by 0.599%,
driven by urban expansion and energy demand in Java's megacities like Jakarta, where commuter flows
amplify regional pollution [16]. However, the negative HDI coefficient (-0.0725) challenges the
traditional STIRPAT view of affluence increasing concentration; in Java, higher HDI may promote
sustainable behaviors, such as public transport use or renewable energy adoption, offsetting
consumption-driven concentration [8].

Table 5. Estimated coefficients of the SAR model.

Coefficient Estimate Std. Error p-value
Intercept 9.4469 2.6326 0.0003
Population density (In) 0.5990 0.1780 0.0008
NDVI -6.7589 2.2628 0.0028
HDI -0.0725 0.0324 0.0250
Manufacturing sector GRDP 0.0148 0.0064 0.0205
Information and communication sector GRDP 0.0448 0.0413 0.2782
p 0.0765 0.0437 0.0000

NDVI's negative coefficient (-6.7589) underscores vegetation's role in sequestration, particularly
in Java's rural southern coasts, where forest cover mitigates urban spillover [10]. The positive
manufacturing sector GRDP coefficient (0.0148) highlights industrialization's environmental cost, as
factories in hubs like Surabaya release pollutants that spread regionally, exacerbating climate
vulnerability in adjacent agricultural areas [9]. The insignificant information and communication sector
GRDP (0.0448) suggests that technological advancements in this sector have not yet translated into
emission reductions, possibly due to limited digital infrastructure in rural Java, where technological
advancements are less widespread [11].

Table 6. Direct, indirect, and total effects of the SAR model on CO: concentration.

Coefficient Direct Effect p-value Indirect Effect p-value Total Effect p-value
Population density (In) 0.7543  0.0003 1.7953 0.0020 2.5496 0.0007
NDVI -8.5119  0.0031 -20.2587 0.0130 -28.7707 0.0071
HDI -0.0913  0.0230 -0.2174  0.0412 -0.3087 0.0313
Manufacturing sector GRDP 0.0186 0.0170 0.0443  0.0496 0.0630 0.0345
Information and communication 0.0564  0.2808 0.1343 0.3135 0.1907 0.3003
sector GRDP

Table 6 decomposes direct, indirect, and total effects, revealing that indirect effects dominate for
all significant variables, underscoring Java’s economic and environmental interconnectivity. The larger
indirect effects imply that local policies must consider regional dynamics; for example, population
growth in Jakarta spills over to Bogor, amplifying concentration through commuter traffic [11]. NDVI's
strong spillover (-20.2587 indirect) suggests reforestation in one regency (e.g., Banten’s southern
forests) benefits neighbors via air quality improvements, supporting integrated green corridors across
Java to maximize carbon sequestration [10]. HDI's negative spillover (-0.2174) indicates that human
capital improvements in affluent areas like Surabaya diffuse sustainable practices regionally, but uneven
development in rural Java limits this [8]. Manufacturing's positive spillover (0.0443) highlights
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pollution from industrial clusters like Bandung affecting adjacent agriculture, calling for emission caps
with cross-regency enforcement [9]. These findings align with studies in Indonesia and similar
urbanized regions, where population and industrial activities amplify concentration through spatial
spillovers, while vegetation and human development mitigate them [11, 12,20]. For instance, Liu &
Han (2021) found that urbanization-driven concentration in China’s Yangtze River Economic Belt have
significant spillover effects due to transportation networks, analogous to Jabodetabek’s commuter
dynamics [11]. Similarly, Weng et al. (2023) reported non-linear urbanization effects in Indonesia, with
spillovers dominating in densely populated regions [12].

These results have critical policy implications. The dominance of indirect effects suggests that local
climate policies in Java must be coordinated regionally. For example, reducing concentration in Jakarta
requires managing commuter flows to Bogor and Tangerang through integrated public transport
systems, such as expanding TransJakarta or commuter rail networks [11]. Reforestation programs in
rural areas, like southern Central Java, should be scaled up to create green belts that benefit neighboring
urban centers, aligning with Indonesia’s Enhanced Nationally Determined Contribution (ENDC) goals
[4]. Industrial emission caps in hubs like Bandung and Surabaya must involve cross-regency
enforcement to mitigate spillover to agricultural zones, protecting food security [9]. The negative HDI
effect highlights the need to promote sustainable practices in high-HDI regions, such as green
technology adoption, while addressing rural-urban disparities to extend these benefits [8]. Ignoring
spillovers risks underestimating impacts, as seen in similar STIRPAT studies in Indonesia [12, 20].

3.5.  Model Evaluation

Model performance was compared using the AIC and BIC, with results in Table 7. The SAR model’s
lower AIC (364.8979 vs. 489.0563) and BIC (387.0634 vs. 508.4551) confirm its superior fit, capturing
spatial effects and reducing estimation bias [15].

Table 7. Model evaluation.

Evaluation metric OLS SAR
AIC 489.0563 364.8979
BIC 508.4551 387.0634

4. Conclusion

Moran’s I test confirms strong positive spatial autocorrelation in CO: concentration, indicating regional
interdependence across Java’s 118 regencies and cities. The SAR model, validated by LM tests,
outperforms OLS and SEM, revealing that population density and manufacturing sector GRDP increase
concentration, while NDVI and HDI reduce them. Critically, indirect (spillover) effects exceed direct
effects for all significant variables, driven by Java’s integrated urban-rural economy. This underscores
the need for coordinated policies, such as regional reforestation to leverage NDVI spillovers, cross-
regency industrial emission controls, and urban planning to manage population density impacts. These
align with Indonesia’s climate goals under the Enhanced Nationally Determined Contribution (ENDC).
For instance, expanding green corridors in rural Java and enhancing public transport in Jabodetabek can
mitigate spillovers from urban centers. Future research could incorporate dynamic spatial panels to
explore temporal spillovers and refine policy strategies.
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