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Abstract: Java Island, Indonesia’s economic and population hub, faces intense environmental 

pressure from CO₂ concentration, exhibiting strong spatial dependence across its 118 regencies 

and cities. This study examines the determinants of CO₂ concentration and their spillover effects 

using an extended STIRPAT framework and a Spatial Autoregressive (SAR) model, applied to 

2024 secondary data from BPS-Statistics Indonesia and Google Earth Engine (GEE). The SAR 

model outperforms OLS, with lower AIC (364.8979 vs. 489.0563) and BIC (387.0634 vs. 

508.4551), confirming spatial effects. In SAR models, interpretation relies on decomposing 

estimated coefficients into direct effects (impacts within a region) and indirect or spillover effects 

(impacts transmitted to neighboring regions), allowing a more nuanced understanding of spatial 

influence. Population density and manufacturing sector GRDP increase emissions, while NDVI 

and HDI reduce them. Population density and manufacturing sector GRDP increase 

concentration, while NDVI and HDI reduce them. Notably, indirect (spillover) effects 

consistently surpass direct effects, driven by commuter flows in urban hubs like Jabodetabek and 

industrial pollution spillovers. These findings inform regional climate strategies, emphasizing 

cross-regency reforestation and emission controls to support Indonesia’s Enhanced Nationally 

Determined Contribution (ENDC) goals. 

Keyword: Carbon Concentration, Java Island, Spatial Autoregressive Model, Spatial 

Dependence, STIRPAT Model. 

 

1. Introduction 
Carbon dioxide (CO₂) is a dominant greenhouse gas (GHG) driving climate change, primarily emitted 

through human activities intensified by economic growth and industrialization. These concentration 

stem largely from the combustion of fossil fuels—such as coal, petroleum, and natural gas—used in 

energy, transportation, and industrial sectors. In ASEAN countries, CO₂ concentration rose significantly 

from 1971 to 2019 [1], reflecting heavy reliance on fossil-based energy to meet economic and societal 

demands. Globally, CO₂ accounts for approximately 76% of GHG concentration when weighted by 

global warming potential, though this varies by region and sector [2]. By amplifying the greenhouse 

effect, CO₂ accelerates global warming, leading to severe environmental impacts, including melting 

polar ice caps, rising sea levels, and more frequent extreme weather events like floods, droughts, and 

heatwaves, which also threaten biodiversity through habitat degradation and species population declines 
[2].Samosir et al. noted that mitigating CO₂ concentration is critical to achieving several Sustainable 

Development Goals (SDGs) [3]. These include SDG 6 (Clean Water and Sanitation), emphasizing 

access to clean water and sanitation; SDG 11 (Sustainable Cities and Communities), promoting 

sustainable urban environments; SDG 13 (Climate Action), advocating for climate-resilient 
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technologies; and SDGs 14 and 15 (Life Below Water and Life on Land), focusing on marine  and 

terrestrial ecosystem preservation. In Indonesia, a major contributor to Southeast Asia’s concentration, 

these goals are particularly relevant. The government has committed to reducing GHG concentration by 

31.89% independently and up to 43.20% with international support by 2030, relative to a business-as-

usual scenario, as outlined in its Enhanced Nationally Determined Contribution (ENDC) [4]. These 

targets are supported by policies like Presidential Regulation No. 98 of 2021, which establishes a carbon 

economic value framework, and Government Regulation No. 22 of 2021, which mandates 

environmental management and GHG emission reductions [5]. 
With a population exceeding 270 million—the world’s fourth largest—Indonesia faces escalating 

energy demands driven by rapid growth in its industrial, construction, and transportation sectors [6]. 
However, reliance on fossil fuels, coupled with deforestation and land conversion for agriculture or 

settlements, significantly contributes to CO₂ concentration. On Java Island, which houses over half of 

Indonesia’s population and serves as an economic hub, CO₂ concentration exhibit spatial 

interdependence. Economic activities such as commuter flows, logistics networks, and industrial 

expansion create spillover effects, where CO₂ concentrations in one regency influence air quality in 

neighboring areas due to pollution diffusion or cross-boundary activities [3, 7]. This spatial dynamic 

underscores the need for targeted, spatially informed mitigation strategies. 

Previous studies have leveraged the STIRPAT (Stochastic Impacts by Regression on Population, 

Affluence, and Technology) framework with spatial econometric models to analyze CO₂ concentration. 

For instance, Zhu and Lin (2025) [8] used an extended STIRPAT model to examine livelihood 

development’s impact on CO₂ concentration in China’s Yangtze River Delta, highlighting spatial 

spillovers. Similarly, Lu et al. (2020) [9] applied spatial analysis to identify determinants of carbon 

concentration in China’s construction industry, revealing significant spatial autocorrelation. Liu and 

Song (2020) [10] employed a spatial Durbin model to assess financial development’s effect on CO₂ 

concentration in China, emphasizing spatial dependencies. Liu and Han (2021) [11] extended STIRPAT 

to study urbanization and technology impacts on concentration in the Yangtze River Economic Belt, 

while Weng et al. (2023) [12] used a spatial Durbin model to explore clean energy investment’s role in 

reducing CO₂ concentration. In Indonesia, Samosir et al. (2024) [3] analyzed spatial dependencies in 

environmental quality, providing a foundation for regional studies. These studies demonstrate the 

efficacy of combining STIRPAT with spatial econometric approaches, such as the Spatial 

Autoregressive (SAR) model, in capturing local and spillover effects in densely populated regions like 

Java. 

This study aims to identify the key factors influencing CO₂ concentration in Java’s regencies/cities 

using an extended STIRPAT model with a Spatial Autoregressive (SAR) estimation approach. By 

analyzing local drivers, it informs targeted mitigation strategies, such as reducing urban pollution and 

coordinating cross-regency reforestation to lower CO₂ concentrations. These findings contribute to 

Indonesia’s climate mitigation goals and sustainable development strategies. 

This study aims to identify the key factors influencing CO₂ concentrations in Java’s regencies and 

cities using an extended STIRPAT model with a Spatial Autoregressive (SAR) estimation approach. By 

analyzing local drivers (e.g., population density, industrial activity) and assessing spillover effects on 

neighboring regions, it informs targeted mitigation strategies, such as reducing urban pollution and 

coordinating cross-regency reforestation to lower CO₂ concentrations. These findings contribute to 

Indonesia’s climate mitigation goals and sustainable development strategies [5,16]. 

 

2. Research Method 

 

2.1. Conceptual Framework 

This study employs the STIRPAT (Stochastic Impacts by Regression on Population, Affluence, and 

Technology) model, developed by Dietz and Rosa [13], to analyze the factors influencing CO₂ 

concentration in regencies and cities across Java Island. The STIRPAT model builds on the IPAT 

identity (Impact = Population × Affluence × Technology), introduced by Ehrlich and Holdren [14]. The 
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IPAT identity posits that environmental impact (I) results from the interaction of population (P), 

affluence (A), and technology (T), expressed as 

 

 

𝐼 =  𝑃 ×  𝐴 ×  𝑇 (1) 
 

However, the IPAT identity is deterministic, assuming a proportional linear relationship that limits its 

use in quantitative regression analysis. To address this, the STIRPAT model reformulates IPAT into a 

stochastic framework suitable for logarithmic regression, with the basic formulation 

𝐼 =  𝑎 × 𝑃𝑖
𝑏 × 𝐴𝑖

𝑐 × 𝑇𝑖
𝑑 × 𝑒𝑖 (2) 

 

where 𝐼𝑖 represents environmental impact (e.g., CO₂ concentration, pollution, resource depletion) in 

region 𝑖, 𝑃𝑖, 𝐴𝑖, and 𝑇𝑖 denote population, affluence, and technology, respectively, 𝑎 is a scaling constant, 

𝑏, 𝑐, and 𝑑 are exponents measuring the elasticity of each factor, and 𝑒𝑖 is the error term. For regression 

analysis, the model is log-transformed as 

 

ln(𝐼𝑖) = ln(𝑎) + 𝑏ln(𝑃𝑖) + 𝑐ln(𝐴𝑖) + 𝑑ln(𝑇𝑖) + ln(𝑒𝑖). (3) 
 

The STIRPAT model is flexible, allowing the inclusion of additional socioeconomic or ecological 

variables relevant to the study context. In this research, the model is extended to incorporate variables 

such as population density, economic growth, industrial contribution, vegetation cover (measured by the 

Normalized Difference Vegetation Index, NDVI), and the number of motor vehicles to capture the 

determinants of CO₂ concentration in Java. Additionally, the Human Development Index (HDI) is used 

as a proxy for affluence, as it encompasses education, health, and living standards, reflecting not only 

consumption levels but also technological capacity and lifestyle patterns in urban and rural regions [8]. 
The HDI thus captures the quality of life, which influences energy consumption and CO₂ concentration. 

Given the spatial interdependence among Java’s regencies/cities, driven by factors such as 

commuter flows and industrial expansion, this study integrates the STIRPAT model with a Spatial 

Autoregressive (SAR) approach. The SAR model accounts for spillover effects, where CO₂ 

concentration in one regency/city may influence neighboring regions [3]. This framework combines 

local factors (population, economy, technology) with spatial dynamics to provide a comprehensive 

understanding of CO₂ concentration in Java. 

 

2.2. Model Estimation Procedure  

This study employs the Spatial Autoregressive (SAR) model to analyze the effects of population, 

affluence (welfare), and technology—along with other socioeconomic factors—as independent 

variables on CO₂ concentration (the dependent variable), while accounting for spatial effects across 

regencies/cities in Java. The SAR model captures spatial autocorrelation in the dependent variable, 

allowing for spillover effects where concentration in one regency influence neighboring areas. The 

process for building and estimating the SAR model follows a structured sequence of steps, as outlined 

below. 

 

Initial Estimation with OLS 

Parameters are first estimated using the Ordinary Least Squares (OLS) model, which ignores spatial 

effects, to establish a baseline  

 

𝑌 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + … +  𝛽𝑘𝑋𝑘 + 𝜀 (4) 
 

where: 

𝑌 :  Dependent variable (CO₂ concentration). 
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𝑋1, 𝑋2, … , 𝑋𝑘 :  Independent variables (e.g., population density, HDI as a proxy for affluence, industrial 

contribution). 

𝛽0, 𝛽1, … , 𝛽𝑘 :  Estimated parameters. 

𝑘 :  Number of independent variables. 

𝜀 :  Error term. 

 

Testing for Spatial Autocorrelation 

To detect spatial effects, the OLS residuals are tested for spatial autocorrelation using Moran’s I statistic. 

A significant p-value (typically < 0.05) indicates spatial dependence, rendering the OLS model 

inadequate for unbiased estimation [15]. If spatial autocorrelation is present, a spatial econometric 

model is required. 

 

Constructing the Spatial Weight Matrix 

The spatial weight matrix (𝑊) is constructed using the queen contiguity approach, which defines 

neighboring regions based on shared borders or vertices. This method is well-suited for irregularly 

shaped administrative units like regencies/cities in Java and has been effectively applied in prior studies 

on emission distributions, such as those examining carbon concentration in China’s construction 

industry and SO₂ concentration in Eastern China [9, 16]. 
 

Testing for the Spatial Model Selection 

To select between the Spatial Autoregressive Model (SAR) and the Spatial Error Model (SEM), 

Lagrange Multiplier (LM) tests are conducted on the OLS residuals. If the LM-Lag test is statistically 

significant (p < 0.05) while the LM-Error test is not, the SAR model is chosen, indicating spatial 

dependence in the dependent variable (CO₂ concentration). Conversely, if the LM-Error test is 

significant while the LM-Lag test is not, the SEM model is selected, indicating autocorrelation in the 

error term. If both LM-Lag and LM-Error tests are significant, Robust LM tests are performed to 

determine the dominant model: the model with the higher Robust LM test statistic (SAR or SEM) is 

preferred. This approach follows established spatial econometrics guidelines [15]. 
 

Specification of the SAR Model 

Based on the test results, the SAR model is specified as 

 

𝑌𝑖 = 𝜌∑𝑊𝑖𝑗𝑌𝑗

𝑛

𝑗=1

+∑𝑋𝑖𝑙𝛽𝑙

𝑘

𝑙=1

+ 𝜀𝑖 (5) 

 

where: 

𝑌𝑖  :  CO₂ concentration in region 𝑖. 
𝑋𝑖𝑙 :  Independent variables for region 𝑖. 
𝛽𝑙 :  Estimated parameters. 

𝑛 :  Number of observations (regencies/cities). 

𝑘 :  Number of independent variables. 

𝜀𝑖 :  Error term. 

𝑊𝑖𝑗 :  Spatial weight matrix element between regions 𝑖 and 𝑗. 

𝜌  :  Spatial autoregressive coefficient, measuring spatial dependence. 

 

Model Evaluation 

The model’s goodness-of-fit is evaluated using the Akaike Information Criterion (AIC) and Bayesian 

Information Criterion (BIC), which balance explanatory power and model complexity. Lower AIC and 

BIC values indicate better model performance. The AIC is calculated as 
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AIC = 2𝑘 − 2ln(𝐿) (6) 
 

where 𝑘 is the number of parameters and 𝐿 is the maximized likelihood function [17]. The BIC is given 

by 

 

BIC = 𝑘ln(𝑛) − 2ln(𝐿) (6) 
 

where 𝑛 is the number of observations [18]. These metrics are standard in spatial econometric studies 

to ensure model parsimony and robustness [15]. 
 

2.3. Data 

This study adopts an extended STIRPAT model to analyze the determinants of CO₂ concentration across 

118 regencies/cities in Java, Indonesia, for the year 2024. The STIRPAT framework, building on the 

IPAT identity as core drivers of environmental impact, with flexibility to include additional 

socioeconomic and ecological variables [10 − 13]. Secondary data for 2024 are sourced from the BPS-

Statistics Indonesia and google earth engine (GEE), covering all regencies and cities in Java except 

Kepulauan Seribu Regency, which is excluded because it lacks spatial neighbors due to its location 

offshore, disconnected from mainland Java, making it unsuitable for the SAR model’s contiguity-based 

spatial weight matrix. 

The CO₂ concentration data were derived from the Sentinel-5 Precursor (Sentinel-5P) satellite using 

datasets available on Google Earth Engine (GEE). This product measures atmospheric carbon monoxide 

(CO) column number density, which serves as a proxy for near-surface CO₂ concentration. The dataset 

provides daily global coverage with a spatial resolution of approximately 7 × 7 km, enabling detailed 

spatial differentiation of air quality and emission patterns. For this study, data were filtered for the period 

from January 1 to December 31, 2024, and averaged to produce an annual mean concentration map over 

Java. Mean values were then extracted at the regency/city level using zonal statistics within GEE. 

Although CO and CO₂ are chemically distinct gases, CO is commonly used as a proxy for 

combustion-related CO₂ concentrations due to their shared sources and correlated spatial patterns. Both 

gases are emitted from fossil fuel combustion, biomass burning, and other anthropogenic activities, 

making CO a useful indicator of emission intensity, especially in urban and industrial areas. This 

approach is supported by studies such as [19], which demonstrate that satellite-derived CO 

concentrations can effectively reflect fossil-fuel CO₂ emission distributions in regional-scale analyses. 

Vegetation indicators were assessed using the Normalized Difference Vegetation Index (NDVI), 

computed from Landsat 8 Collection 2 Level-2 Surface Reflectance data. NDVI was calculated using 

the red (Band 4) and near-infrared (Band 5) bands with the formula: (NIR − RED) / (NIR + RED). The 

dataset was filtered for July 2024, representing the dry season in Java, to minimize cloud contamination. 

Only scenes with less than 10% cloud cover were included. A median composite was generated to reduce 

noise, and NDVI values were aggregated to the regency/city level using mean zonal statistics. This index 

reflects vegetation density and health, which indicates the land’s potential to absorb carbon and mitigate 

CO₂ concentrations. 

Table 1. Variable definitions. 

Description Measurement Unit Source 

Total CO₂ Concentration Total annual CO₂ concentration 𝑔 𝑚3⁄  GEE 

Population density Total population divided by area Persons/km² BPS 

Vegetation Index (NDVI) Normalized index from NIR and red band 

reflectance 

Index (-1 to 1) GEE 

Human Development Index 

(HDI) 

Composite index of life expectancy, 

education, and living standards 

Index (0–100) BPS 
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Manufacturing Sector GRDP Percentage of GRDP from the 

manufacturing sector 

Percent BPS 

Information and 

Communication Sector GRDP 

Percentage of GRDP from the information 

and communication sector 

Percent BPS 

 

 

The variables used in the extended STIRPAT model are detailed in Table 1, including their 

definitions, measurements, units, and sources. Population density represents the population (𝑃) 
component, capturing demographic pressure on concentration. The Human Development Index (HDI) 

serves as a proxy for affluence (𝐴), reflecting quality of life through education, health, and living 

standards, which influence consumption patterns and energy use [8]. The Gross Regional Domestic 

Product (GRDP) of the manufacturing sector (as a percentage of total GRDP) is included as an additional 

economic variable, representing industrial activity’s contribution to concentration. The GRDP of the 

information and communication sector (as a percentage of total GRDP) proxies technological 

advancement, as this sector often drives innovation and efficiency [11]. The Normalized Difference 

Vegetation Index (NDVI) is included as an ecological variable, measuring vegetation cover’s role in 

carbon sequestration. The number of motor vehicles captures transportation-related concentration, a 

significant factor in Java’s urbanized regions. 

 

3. Result and Discussion 
 

3.1. Spatial Distribution of CO₂ Concentration 
The distribution of CO₂ concentration across 118 regencies and cities in Java, Indonesia, exhibits 

significant spatial variation, as shown in Figure 1. High concentration are concentrated in urban and 

industrial hubs, including Greater Jakarta (Jabodetabek), Bandung, and Surabaya, driven by dense 

populations and industrial activities. Conversely, lower concentration are observed in rural and less 

industrialized areas, particularly in the southern parts of Banten and West Java provinces and the 

southern coastal regions of Central and East Java. The thematic map uses color gradation to represent 

emission levels, with darker shades indicating higher concentration and lighter shades denoting lower 

concentration. The map also reveals clustering patterns, where high-emission regions are often adjacent 

to other high-emission areas, suggesting potential spillover effects consistent with spatial dependence. 

 

3.2. OLS Regression Results 

To provide a baseline, multiple linear regression (MLR) was conducted using the ordinary least squares 

(OLS) method, ignoring spatial dependence. The results, presented in Table 2, estimate the effects of 

population density, NDVI, HDI, Manufacturing Sector GRDP, and Information and Communication 

Sector GRDP on CO₂ concentration. 
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Figure 1. Map of CO₂ Emission Distribution. 

The OLS results indicate that, at a 5% significance level, the natural logarithm of population 

density, NDVI, and HDI significantly influence CO₂ concentrations, serving as a baseline for 

comparison with the Spatial Autoregressive (SAR) model. Higher population density is associated with 

increased concentrations, reflecting urban activity, while NDVI (-12.0833) suggests vegetation reduces 

concentrations via carbon sequestration [8]. The unexpected negative HDI coefficient (-0.1455) may 

indicate efficiency or green policies in high-HDI regions, warranting further investigation. However, 

OLS is invalid due to spatial autocorrelation, and the SAR model, which captures spillover effects, 

provides reliable estimates (subsection 3.5). Manufacturing and Information Sector GRDP show no 

significant effects (p-values > 0.05). 

Table 2. Estimated coefficients of the OLS model. 

 

Variable Coefficient Std. Error p-value 

Intercept 32.7461 4.2159 0.0000 

Population density (ln) 1.6043 0.3162 0.0000 

NDVI -12.0833 4.3158 0.0060 

HDI -0.1455 0.0608 0.0183 

Manufacturing sector GRDP 0.0187 0.0123 0.1301 

Information and communication sector GRDP -0.0511 0.0793 0.5207 
 

 

Classical assumption tests were conducted to ensure the OLS model satisfies the Best Linear 

Unbiased Estimator (BLUE) criteria, with results presented in Table 3. 

Table 3. Results of classical assumption tests for OLS. 

Assumption test Test statistic p-value 
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Jarque-Bera test 0.7014 0.7042 

Breusch-Pagan test 17.744 0.0033 

Durbin-Watson test 0.9782 0.0000 

Independent variable VIF 

Population density (ln) 3.8257 

NDVI 2.6117 

HDI 3.5508 

Manufacturing sector GRDP 1.5353 

Information and communication sector GRDP 2.2784 
 

 

The OLS model meets the normality assumption (Jarque-Bera p-value = 0.7042 > 0.05) and the no-

multicollinearity assumption, as all Variance Inflation Factor (VIF) values are below 5, indicating no 

severe collinearity among independent variables. However, the model violates two assumptions: the 

Breusch-Pagan test (p-value = 0.0033 < 0.05) confirms heteroskedasticity, indicating non-constant 

residual variance, and the Durbin-Watson test (p-value = 0.0000) indicates positive autocorrelation. 

These violations suggest that OLS estimates may be inefficient or biased, necessitating a spatial 

regression approach to account for spatial dependence. 

 

3.3. Spatial Dependence Analysis 

To construct the spatial weight matrix for the SAR model, the number of neighbors for each regency/city 

was determined using the queen contiguity method, as shown in Figure 2. On average, each region has 

three to four neighbors, but significant variation exists. For example, Bogor Regency, centrally located 

with broad geographic coverage, has up to 11 neighbors, while some municipalities have only one. This 

diversity in spatial connectivity underscores the need for spatial modeling. 

 

Figure 2. Number of neighbors based on queen contiguity weights. 

A randomization test of Moran’s I was conducted to assess spatial dependence in CO₂ 

concentration, with results shown in Figure 3. Using queen contiguity weights, the Moran’s I value is 

0.7754, with a z-score of 12.0365 and a pseudo p-value of 0.0010, indicating strong positive spatial 

autocorrelation. This means that regions with high CO₂ concentration tend to be surrounded by other 

high-emission regions, and low-emission regions are adjacent to similar areas, confirming the clustering 

observed in Figure 1. The observed Moran’s I (green line) lies far from the reference distribution of 999 

permutations, with no permuted values exceeding the observed statistic, providing robust evidence of 

spatial dependence. 
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Figure 3. Moran’s I of CO₂ concentration with 999 permutations. 

Given the presence of spatial autocorrelation, diagnostic Lagrange Multiplier (LM) tests were 

conducted to select the appropriate spatial model, with results presented in Table 4. Both LM lag and 

LM error tests are significant at the 5% level (p < 0.05), indicating spatial dependence. However, the 

Robust LM lag test remains significant (p = 0.0000), while the Robust LM error test is not (p = 0.8725), 

suggesting that the Spatial Autoregressive (SAR) model, which accounts for spatial dependence in the 

dependent variable (CO₂ concentration), is the most appropriate specification [15]. 
Diagnostic tests confirmed both heteroskedasticity (Breusch-Pagan test, p < 0.05) and spatial 

autocorrelation (Moran’s I, p < 0.05) in the data. While Geographically Weighted Regression (GWR) 

can address heteroskedasticity by modeling spatially varying coefficients, the LM test indicated that the 

SAR model was the most appropriate (robust LM-lag: p < 0.01; robust LM-error: p > 0.05). SAR was 

chosen because it explicitly captures spillover effects of CO₂ concentrations across neighboring 

regencies, aligning with the study’s focus on spatial interdependence and regional mitigation strategies. 

Table 4. Diagnostic LM tests for spatial dependence. 

Diagnostic Test Test statistic p-value 

LM lag 102.2504 0.0000 

LM error 72.3642 0.0000 

Robust LM lag 29.9120 0.0000 

Robust LM error 0.0257 0.8725 

SARMA 102.2762 0.0000 
 

 

3.4. SAR Model Results 

The SAR model was estimated to address the spatial dependence and OLS assumption violations, 

incorporating the spatial lag of CO₂ concentration. The results, presented in Table 5, show the estimated 

coefficients, standard errors, and p-values for the variables and the spatial autoregressive coefficient 
(𝜌). The significant 𝜌 (0.0765, p = 0.0000) confirms spatial spillover effects, where concentration in 

one region are influenced by neighboring regions, highlighting the interconnected nature of 

environmental impacts in Java's densely populated and economically integrated landscape. 

The SAR model reveals that population density, NDVI, HDI, and manufacturing sector GRDP 

significantly influence CO₂ concentration at the 5% level, while information and communication sector 

GRDP remains insignificant. Compared to OLS (Table 2), the SAR model adjusts for spatial bias, 
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reducing the magnitude of coefficients (e.g., ln(population density) from 1.6043 to 0.5990), suggesting 

that OLS overestimated effects due to unaccounted spillovers. The positive coefficient for population 

density (0.5990) indicates that a 1% increase in population density raises concentration by 0.599%, 

driven by urban expansion and energy demand in Java's megacities like Jakarta, where commuter flows 

amplify regional pollution [16]. However, the negative HDI coefficient (-0.0725) challenges the 

traditional STIRPAT view of affluence increasing concentration; in Java, higher HDI may promote 

sustainable behaviors, such as public transport use or renewable energy adoption, offsetting 

consumption-driven concentration [8]. 

Table 5. Estimated coefficients of the SAR model. 

Coefficient Estimate Std. Error p-value 

Intercept 9.4469 2.6326 0.0003 

Population density (ln) 0.5990 0.1780 0.0008 

NDVI -6.7589 2.2628 0.0028 

HDI -0.0725 0.0324 0.0250 

Manufacturing sector GRDP 0.0148 0.0064 0.0205 

Information and communication sector GRDP 0.0448 0.0413 0.2782 

𝜌 0.0765 0.0437 0.0000 
 

 

NDVI's negative coefficient (-6.7589) underscores vegetation's role in sequestration, particularly 

in Java's rural southern coasts, where forest cover mitigates urban spillover [10]. The positive 

manufacturing sector GRDP coefficient (0.0148) highlights industrialization's environmental cost, as 

factories in hubs like Surabaya release pollutants that spread regionally, exacerbating climate 

vulnerability in adjacent agricultural areas [9]. The insignificant information and communication sector 

GRDP (0.0448) suggests that technological advancements in this sector have not yet translated into 

emission reductions, possibly due to limited digital infrastructure in rural Java, where technological 

advancements are less widespread [11]. 

Table 6. Direct, indirect, and total effects of the SAR model on CO₂ concentration. 

Coefficient Direct Effect p-value Indirect Effect p-value Total Effect p-value 

Population density (ln) 0.7543 0.0003 1.7953 0.0020 2.5496 0.0007 

NDVI -8.5119 0.0031 -20.2587 0.0130 -28.7707 0.0071 

HDI -0.0913 0.0230 -0.2174 0.0412 -0.3087 0.0313 

Manufacturing sector GRDP 0.0186 0.0170 0.0443 0.0496 0.0630 0.0345 

Information and communication 

sector GRDP 

0.0564 0.2808 0.1343 0.3135 0.1907 0.3003 

 

 

Table 6 decomposes direct, indirect, and total effects, revealing that indirect effects dominate for 

all significant variables, underscoring Java’s economic and environmental interconnectivity. The larger 

indirect effects imply that local policies must consider regional dynamics; for example, population 

growth in Jakarta spills over to Bogor, amplifying concentration through commuter traffic [11]. NDVI's 

strong spillover (-20.2587 indirect) suggests reforestation in one regency (e.g., Banten’s southern 

forests) benefits neighbors via air quality improvements, supporting integrated green corridors across 

Java to maximize carbon sequestration [10]. HDI's negative spillover (-0.2174) indicates that human 

capital improvements in affluent areas like Surabaya diffuse sustainable practices regionally, but uneven 

development in rural Java limits this [8]. Manufacturing's positive spillover (0.0443) highlights 
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pollution from industrial clusters like Bandung affecting adjacent agriculture, calling for emission caps 

with cross-regency enforcement [9]. These findings align with studies in Indonesia and similar 

urbanized regions, where population and industrial activities amplify concentration through spatial 

spillovers, while vegetation and human development mitigate them [11, 12, 20]. For instance, Liu & 

Han (2021) found that urbanization-driven concentration in China’s Yangtze River Economic Belt have 

significant spillover effects due to transportation networks, analogous to Jabodetabek’s commuter 

dynamics [11]. Similarly, Weng et al. (2023) reported non-linear urbanization effects in Indonesia, with 

spillovers dominating in densely populated regions [12]. 
These results have critical policy implications. The dominance of indirect effects suggests that local 

climate policies in Java must be coordinated regionally. For example, reducing concentration in Jakarta 

requires managing commuter flows to Bogor and Tangerang through integrated public transport 

systems, such as expanding TransJakarta or commuter rail networks [11]. Reforestation programs in 

rural areas, like southern Central Java, should be scaled up to create green belts that benefit neighboring 

urban centers, aligning with Indonesia’s Enhanced Nationally Determined Contribution (ENDC) goals 
[4]. Industrial emission caps in hubs like Bandung and Surabaya must involve cross-regency 

enforcement to mitigate spillover to agricultural zones, protecting food security [9]. The negative HDI 

effect highlights the need to promote sustainable practices in high-HDI regions, such as green 

technology adoption, while addressing rural-urban disparities to extend these benefits [8]. Ignoring 

spillovers risks underestimating impacts, as seen in similar STIRPAT studies in Indonesia [12, 20]. 
 

3.5. Model Evaluation 

Model performance was compared using the AIC and BIC, with results in Table 7. The SAR model’s 

lower AIC (364.8979 vs. 489.0563) and BIC (387.0634 vs. 508.4551) confirm its superior fit, capturing 

spatial effects and reducing estimation bias [15]. 

Table 7. Model evaluation. 

Evaluation metric OLS SAR 

AIC 489.0563 364.8979 

BIC 508.4551 387.0634 
 

 

4. Conclusion 

Moran’s I test confirms strong positive spatial autocorrelation in CO₂ concentration, indicating regional 

interdependence across Java’s 118 regencies and cities. The SAR model, validated by LM tests, 

outperforms OLS and SEM, revealing that population density and manufacturing sector GRDP increase 

concentration, while NDVI and HDI reduce them. Critically, indirect (spillover) effects exceed direct 

effects for all significant variables, driven by Java’s integrated urban-rural economy. This underscores 

the need for coordinated policies, such as regional reforestation to leverage NDVI spillovers, cross-

regency industrial emission controls, and urban planning to manage population density impacts. These 

align with Indonesia’s climate goals under the Enhanced Nationally Determined Contribution (ENDC). 

For instance, expanding green corridors in rural Java and enhancing public transport in Jabodetabek can 

mitigate spillovers from urban centers. Future research could incorporate dynamic spatial panels to 

explore temporal spillovers and refine policy strategies. 
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