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Abstract. Climate change has increased the frequency and intensity of extreme weather events, 

including heatwaves and cold spells, posing critical risks to public health and urban 

infrastructure. This study proposes and compares two deep learning frameworks based on 

Autoencoders, namely the Long Short-Term Memory Autoencoder (LSTM-AE) and the 

standard Autoencoder (AE), for detecting extreme temperature anomalies using historical daily 

data from 2005 to 2025 in Semarang City. Unlike conventional anomaly detection methods, the 

LSTM-AE introduces temporal learning through recurrent memory cells, enabling it to capture 

sequential temperature dependencies that static AE models cannot. Both models are trained to 

reconstruct “normal” temperature patterns, with anomalies identified when reconstruction errors 

exceed the 95th percentile threshold. The results demonstrate that the LSTM-AE more 

consistently identifies significant heatwave and cold spell events, with seasonal alarm rates that 

closely align with local climatic transitions. Several detected peaks coincide with historically 

documented events such as the 2015–2019 El Niño and 2019–2020 transition periods reported 

by BMKG, confirming climatological relevance. In contrast, the standard AE detects a higher 

number of anomalies  (726 vs 366 from the LSTM-AE) but tends to generate false alarms outside 

transitional periods. Model performance is evaluated using reconstruction error distributions, 

Jaccard similarity indices, and monthly alarm rates. This study highlights the potential of 

LSTM-based architectures for improving anomaly detection in climate data and contributes to 

developing data-driven strategies for urban climate resilience in tropical regions.       
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1. Introduction 

In recent years, climate change has increasingly become a major global concern [1]. One of the most 

evident impacts is the growing intensity and frequency of extreme weather events, such as prolonged 

heatwaves, severe winters, and unpredictable shifts in rainfall patterns [2], [3]. These conditions pose 

serious risks not only to ecosystems but also to key sectors, including public health [4], agriculture [5], 

and the stability of urban infrastructure [6]. According to the 2024 Climate and Air Quality Report for 

Indonesia released by the Badan Meteorologi Klimatologi dan Geofisika (BMKG), the country recorded 

its highest annual temperature anomaly to date, with an increase of 0.8°C above the long-term average 

, based on historical observations from 113 BMKG observation stations from 1981 to 2024 [7]. 

The city of Semarang, as one of the metropolitan areas on the northern coast of Java, faces a set of 

unique challenges. Its strategic geographic location, while advantageous, also makes it vulnerable to
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 urban heat island (UHI) effects, high population density, and intense economic activity—all of 

which contribute to the increasingly complex impacts of extreme temperature rise. Otherwise, extreme 

heatwaves and cold spells degrade quality of life, increase climate-related health risks [8], and intensify 

the burden on energy and healthcare infrastructure [9], [10]. Extreme tempeture events are generally 

defined as periods when daily maximum or minimum temperatures persistently exceed or fall below 

the climatological normal by statistically significant margins [11], commonly identified through 

percentile-based or standard deviation thresholds derived from long-term historical observations [12], 

[13]. 

The importance of detecting extreme temperature anomalies is closely linked to the need for early 

warning systems and climate adaptation policies at both local and global levels [14]. A detection system 

capable of identifying anomaly patterns at an early stage allows governments and policymakers to 

implement targeted adaptation measures, including optimizing public health preparedness [15], 

balancing energy distribution [16], and integrating climate considerations into urban spatial planning 

[17]. Furthermore, consistently detected temperature anomaly data can serve as a foundation for 

developing long-term climate adaptation policies, enabling vulnerable cities like Semarang to better 

prepare for increasingly unpredictable climate dynamics caused by global change. 

Isolation Forest (iForest) method has been widely used in temperature anomaly detection due to its 

simplicity, computational efficiency, and ability to handle large datasets without assuming any specific 

data distribution. The algorithm operates by constructing random decision trees to isolate outlier data 

points, where the quicker a point is isolated, the more likely it is to be an anomaly [18]. Its application 

has proven effective, for instance, in detecting surface temperature anomalies in satellite imagery to 

identify underground coal fires [19], as well as in detecting temperature sensor anomalies in spacecraft, 

achieving high detection rates with low false alarms [20]. However, the primary limitation of iForest 

lies in its inability to capture temporal or seasonal patterns, as each observation is treated independently, 

without considering intertemporal relationships. This makes it less suitable for climate data, which 

typically exhibit complex seasonal cycles. Therefore, while iForest is often used as a strong baseline in 

temperature anomaly detection, deep learning-based approaches such as Autoencoders and LSTM-AE 

(LSTM-AE) are considered more effective. These methods are capable of learning complex nonlinear 

representations and long-term dependencies, resulting in more consistent detection that aligns better 

with the distinct seasonal dynamics of tropical climates. 

Deep learning approaches, particularly Autoencoders and LSTM-AE, are becoming increasingly 

relevant for anomaly detection in daily temperature data due to their ability to capture complex patterns 

and long-term dependencies in time series. An Autoencoder functions by reconstructing the input and 

identifying anomalies through reconstruction error, while an LSTM-AE extends this by learning 

temporal correlations, an essential feature for climate data, which often exhibit both daily and seasonal 

trends [21]. Comparative studies have shown that LSTM-AE outperform standard Autoencoders, 

achieving accuracy rates of up to 99% in detecting anomalies in temperature and other sensor data, 

owing to their ability to retain latent representations over long input sequences [22]. Other research 

confirms that LSTM-AE remain effective even when applied to real-world sensor data that are noisy, 

significantly reducing both false positive and false negative rates [23]. This LSTM-AE particularly 

well-suited for historical data–based daily temperature anomaly detection, especially in tropical climate 

contexts characterised by distinct seasonal patterns and long-term variability. 

Based on this background, the research problem is formulated as follows: how to design a framework 

for detecting daily extreme temperature anomalies that can accurately identify significant deviations in 

the historical climate record of Semarang City, and how to compare the performance of a standard 

Autoencoder (AE) with that of an LSTM-based Autoencoder (LSTM-AE) in capturing anomalies 



 

 

 

157 
 

G K Wijaya et al 

related to seasonal transitions. The contributions of this study are threefold: (i) establishing a 

comparative framework between AE and LSTM-AE for extreme temperature anomaly detection, (ii) 

integrating reconstruction-error thresholding with seasonal evaluation metrics, and (iii) demonstrating 

the applicability of deep learning methods for supporting climate adaptation in tropical urban contexts. 

2. Research Method 

To accurately detect extreme temperature anomalies, a model is needed that is not only capable to 

process historical data, but also understand complex temporal dynamics. Therefore, this research 

organized through a series of systematic stages start from pre-processing data, development deep 

learning model, until evaluation model detection performance. This study utilizes daily temperature 

data Semarang City from 2005-2025 which is obtained through National Centers for Enviromental 

Information (NCEI), comprising 7,339 daily observation. 

Table 1. Representative data used in the study. 

Date TAVG TMAX TMIN PRCP SNOW SNWD 

2005-01-01 NaN NaN NaN NaN NaN NaN 

2005-01-02 83.0 NaN 77.0 0.00 NaN NaN 

2005-01-03 82.0 92.0 77.0 NaN NaN NaN 

2005-01-04 83.0 NaN NaN 0.43 NaN NaN 

2005-01-05 82.0 NaN 78.0 NaN NaN NaN 

 

2.1. Pre processing 

The data preprocessing stage was conducted to ensure the quality and consistency of the temperature 

dataset before modeling. In this study, three key daily temperature variables were utilized: average 

temperature (TAVG), maximum temperature (TMAX), and minimum temperature (TMIN), as their 

combination provides a more comprehensive representation of diurnal and extreme temperature 

dynamics. The dataset, obtained from the National Centers for Environmental Information (NCEI), was 

originally recorded in Fahrenheit, thus requiring conversion to Celsius for consistency with 

climatological standards: 

𝑇(𝑜𝐶) = (𝑇(𝑜𝐹) − 32) 
5

9
 

   (1) 

In addition to the unit conversion, some additional steps were also taken. Missing values (NaN) in 

the daily temperature series were handled using the linear interpolation method, which estimates 

missing observations  based on the temporal trend between adjacent valid data point [24], [25]. This 

approach preserves the continuity and smoothness of temperature variations over time, minimizing the 

risk of abrupt artificial jumnps [26]. After interpolation, any remaining missing entries at the beginning 

or end of the series were removed to ensure complete data integrity. Furthermore, the data is normalized 

using MinMaxScaler to speed up the convergence process when training the model [27]. 

Specifically to the LSTM-AE model, the data is organized in the form of a 30 days time window so 

that the model can learn the temporal depency pattern. Meanwhile, on a standard Autoencoder, input is 

given in the form of daily data snapshots without taking into account the time sequence context. 
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2.2. LSTM-Autoencoder (LSTM-AE) 

The LSTM-Autoencoder architecture is designed to learn the temporal dependance of the time series of 

average daily temperature [28]. The model accepts inputs of size 𝑋 ∈ 𝑅𝑛𝑡𝑥𝑛𝑓 with 𝑛𝑡 is length of the 

time window and 𝑛𝑓 number of features. On the encoder part, two layers LSTM used successively with 

128 and 64 units. The first layer outputs a sequential representation ℎ𝑖
(1)

, while the second layer reduces 

the temporal dimension to a latent vector representation 𝑧 ∈ 𝑅32 through non-linear transformation: 

ℎ𝑖
(1)
= 𝐿𝑆𝑇𝑀128(𝑋), ℎ

(2) = 𝐿𝑆𝑇𝑀64 (ℎ𝑖
(1)
) , 𝑧 = 𝑓(ℎ(2);𝑊), 

(2) 

with 𝑓(⋅) is the activation function ReLU and 𝑊 Dense layer weight.Latent representation 𝑧 then 

replicated along the time dimension using the RepeatVector operation, so 𝑍 ∈ 𝑅
𝑛𝑖𝑥32. The decoder part 

projects these sequences back through two LSTM layers with 64 and 128 units, which results in a 

reconstruction of the 𝑋̂[29]: 

𝑋̂ = 𝐿𝑆𝑇𝑀128(𝐿𝑆𝑇𝑀64(𝑍)) 

(3) 

The final output is mapped with TimeDistributed Dense layer to restore the original dimensions 

(𝑛𝑖, 𝑛𝑓). 

Model trained with Mean Absolute Error (MAE) function, 

𝐿 =
1

𝑛𝑖⋅𝑛𝑓
∑𝑛𝑖𝑖=1 ∑

𝑛𝑓
𝑗=1

|𝑋𝑖𝑗 − 𝑋̂𝑖𝑗|, 

(4) 

and Adam optimizer with 50 epoch and batch size 128. The number of epochs was set to provide a 

balance between stability and the risk of overfitting. A batch size value of 128 was also chosen as a 

compromise between computational efficiency and granularity of weight updates. Hyperparameter 

tuning techniques such as grid search were not employed in this study, as the primary objective was to 

compare the structural performance and anomaly detection behavior between the Autoencoder and 

LSTM-AE models rather than to optimize individual model performance. Nevertheless, the selected 

parameters were based on preliminary experiments that provided stable and consistent reconstruction 

results. 

2.3. Autoencoder 

As a baseline, this study uses a Dense layer-based Autoencoder to reconstruct daily temperature patterns 

without considering temporal dependencies [30]. Input is a vector 𝑥 ∈ 𝑅𝑑 with 𝑑 = 𝑛𝑓 is the number 

of vectors daily temperature. The encoder architecture consists of three consecutive Dense layers with 

128, 64, and 32 units which uses the activation function ReLU. Latent representation 𝑧 ∈ 𝑅32 obtained 

through non-linear transformation: 

ℎ
(1)
= 𝑓(𝑥𝑊1 + 𝑏1), ℎ

(2) = 𝑓(ℎ(1)𝑊2 + 𝑏2), 𝑧 = 𝑓(ℎ
(2)𝑊3 + 𝑏2) 

(5) 

with 𝑓(⋅) is function ReLU. The decorder projects back 𝑧 through symmetrical layer sized 64 and 128 

units, to produce a reconstruction 𝑥 same dimension as the input using sigmoid activation function: 
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𝑥 = 𝜎(𝑧𝑊𝑑 + 𝑏𝑑) 

(6) 

Like LSTM-AE model, This model is trained with the Mean Absolute Error (MAE) (4) with Adam 

optimizer. 

Number of epoch also set as many as 50 and batch size 32. While a validation split of 0.1 allows for 

consistent monitoring of model performance during training. Activation function usage ReLU in the 

hidden layer accelerates convergence through sparsity properties [31], while the output layer uses a 

sigmoid to keep the reconstructed value in the range of [0, 1] after normalization [[32]. 

2.4. Anomaly Detection & Evaluation 

The anomaly detection stage is performed by calculating the reconstruction error between the original 

input 𝑥 and reconstruction output 𝑥. The error is computed using Mean Absolute Error (MAE) for each 

observation (4), with 𝑛𝑖 ⋅ 𝑛𝑓 is the number of features. MAE was selected instead of metrics such as 

MSE or RMSE because it provides a more robust and interpretable measure of reconstruction deviation, 

less sensitive to outliers that may arise from short-term fluctuation in temperature data [33], [34]. The 

error distribution on the training data is used to determine the detection threshold 𝜏, which is set at the 

95th percentile. This value was empirically selected as it provided a balanced trade-off between detection 

sensitivity and false alarm rate compared to the 90th and 99th percentile. Every observation with 𝐿 > 𝜏 
categorized as an extreme temperature anomaly. 

Performance evaluation is done through several aspects. First, the reconstruction error distribution 

is compared to assess the stability of the model [35]. Second, the number of detected anomalies was 

analyzed to identify potential false alarms, which were validated qualitatively through their alignment 

with known seasonal transitions rather than labeled ground truth. Third, the alarm rate was examined 

on a monthly and seasonal basis to evaluate consistency with Semarang's climatic patterns. This multi-

year dataset inherently served as a temporal cross-validation framework to ensure robustness against 

overfitting to specific seasons. In addition, the similarity of anomalies detected by both models was 

quantified using the Jaccard similarity index, where a higher value indicates consistent detection 

behavior and a lower value reflects model complementarity that useful for policymakers to gauge 

detection reliability and uncertainty [36], [37]. Although additional statistical metrics could be 

incorporated, reconstruction-based evaluation and seasonal consistency are standard practices for 

unsupervised climate anomaly detection. To formalize this comparison, the Jaccard similarity index is 

expressed as follows: 

𝐽(𝐴, 𝐵) =
|𝐴∩𝐵|

|𝐴⋃𝐵|
, 

(7) 

with A and B is the set of detected anomaly dates of each model. 

To clarify the interpretation, the evaluation results are visualized through (i) a histogram of the 

reconstruction error distribution, (ii) a temporal line chart of reconstruction errors with threshold 

references, and (iii) a monthly alarm rate curve compared with the average monthly temperature. These 

visualizations collectively highlight both statistical stability and temporal alignment with climatic 

variations, providing a concise yet sufficient basis for distinguishing meaningful anomaly patterns 

within the comparative framework of this study. 
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3. Result and Discussion 

Analysis of reconstruction error is fundamental in evaluating both models, namely the LSTM-AE and 

the standard Autoencoder. The error distribution serves as a diagnostic indicator of the model’s ability 

to reconstruct “normal” data and to distinguish it from anomalies. The underlying hypothesis is that 

models with higher reconstruction accuracy should yield a more centered and consistent error 

distribution [38], [39]. 

 

3.1.  Result 

 

Figure 1. LSTM-AE reconstruction error distribution. 

 

Figure 2. Autoencoder reconstruction error distribution. 

 

The reconstruction error distributions of both models are presented in Figures 1 and 2. Although the 

standard AE achieves a lower average reconstruction error (approximately 0.04–0.05) compared to the 

LSTM-AE (around 0.06), this does not directly imply superior anomaly detection capability. The LSTM-

AE produces a smoother and unimodal error distribution, while the AE shows a more irregular, bimodal 

pattern. This indicates that the LSTM-AE reconstructs normal patterns more consistently across temporal 

variations, reducing random fluctuations that may be misinterpreted as anomalies. Thus, model superiority 

in this study is determined not by lower absolute error, but by stability and discriminative capacity in 

distinguishing normal from anomalous behavior [40]. 
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Table 1. Sensitivity of anomaly detection across percentile thresholds. 

Percentile (τ) Threshold Value (MAE) Detected Anomalies (n) 

P-90th 0.0787 (LSTM-AE) / 0.0662 (AE) 726 (LSTM-AE) / 814 (AE) 

P-95th 0.0836 (LSTM-AE) / 0.0686 (AE) 366 (LSTM-AE) / 421 (AE) 

P-99th 0.0937 (LSTM-AE) / 0.0749 (AE) 71 (LSTM-AE) / 89 (AE) 

 

To assess robustness to the chosen detection thresholds, additional experiments were conducted using 

the 90th, 95th, and 99th percentiles of the reconstruction error distributions. The 90th percentile produced 

excessive detections (high false alarm potential), while the 99th percentile was overly restrictive and 

missed several anomaly clusters. The 95th percentile yielded the most balanced trade-off between 

sensitivity and stability; therefore, it was selected as the final threshold for both models. Empirically, the 

95th percentile corresponded to approximately 5–6% of total daily observations being classified as 

anomalies, which is consistent with the typical proportion of extreme temperature events reported in global 

climatological studies (see Table 1). This multi-percentile testing confirms that the reported results are not 

dependent on an arbitrary choice of threshold, but are consistent across a reasonable range of detection 

sensitivities. 

Since no labeled ground-truth anomaly data were available, false alarms were evaluated contextually 

rather than through direct label comparison. Specifically, anomalies detected during climatologically 

stable periods (e.g., months with typical temperature ranges) or inconsistent between models were 

considered likely false positives. This approach follows established practice in unsupervised climate 

anomaly studies. [41], [42]. In this context, “noise” is formally defined as short-term fluctuations in daily 

temperature that remain within the normal climatological range. The standard AE, which processes each 

day independently, tends to reconstruct such high-frequency variations as separate anomalies, whereas the 

LSTM-AE captures temporal continuity and suppresses these noisy deviations [43], [44]. Consequently, 

the LSTM-AE exhibits more robust detection behavior, maintaining consistency across seasons and 

reducing the number of false alarms under otherwise normal conditions [45]. 
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Figure 3. Monthly alarm rate comparison in 2024. 

 

The monthly alarm rate for 2024 reveals distinct detection behaviors between the LSTM-AE and the 

standard Autoencoder. The LSTM-AE produces higher alarm rates in March (61.3%), April (33.3%), 

October (38.7%), and November (30%), while other months remain close to zero. Although higher 

alarm frequencies might suggest over-sensitivity, the temporal alignment of these peaks with known 

seasonal transitions in Semarang indicates that these alarms correspond to climatologically meaningful 

events rather than random fluctuations. The detection threshold (𝜏₉₅) was applied consistently across 

months to control model sensitivity, confirming that the observed alarm variations arise from genuine 

temperature dynamics instead of threshold bias.  

When compared to the 2024 monthly average temperature (Figure 3), the alarm rate spikes generated 

by the LSTM-AE align closely with periods of sharp increases or decreases in temperature, particularly 

in March and October. This correspondence suggests that the model’s detections represent seasonal 

transition anomalies rather than random fluctuations, reinforcing its climatological relevance. In 

contrast, the standard Autoencoder fails to capture this relationship, its alarm rates are weaker, more 

sporadic, and largely inconsistent with the dynamics of average temperature. Making it less reliable for 

supporting climate-based early-warning systems. From an operational perspective, such clustered alarm 

periods can be interpreted as transition-phase alerts, providing actionable signals for short-term heat-

health advisories, adaptive urban cooling measures, and energy demand adjustments in the city’s early-

warning framework. This translation from model output to practical insight allows policymakers to use 

detection patterns as early indicators for resource planning and risk mitigation [46], [47]. 

The Jaccard similarity between both models is 0.156, reflecting limited but meaningful overlap. 

Rather than indicating spurious detections, this divergence highlights the models’ complementary 

sensitivities: the LSTM-AE captures sequence-dependent anomalies associated with seasonal 

transitions [48], while the standard Autoencoder responds to short-term reconstruction deviations. This 

difference arises from their architectural design, as the LSTM-AE incorporates temporal dependencies 

while the AE treats each day as an independent observation. The consistent seasonal alignment of 

LSTM-AE alarms confirms that its sensitivity targets meaningful climate events, not random noise. 

While this study focuses on temperature anomalies, the same architecture could potentially be adapted 

for other climate variables such as humidity or precipitation, provided that retraining and threshold 

calibration are performed to account for their distinct temporal behaviors [49]. Consequently, the 

LSTM-AE demonstrates stronger climatological coherence and practical interpretability, making it a 

more suitable basis for temperature-oriented early-warning system. 

 

3.2. Discussion 

The comparative analysis between the LSTM-AE and the standard Autoencoder highlights key 

distinctions in their ability to detect extreme temperature anomalies in Semarang City. While the 

standard Autoencoder exhibits lower average reconstruction errors, it produces a longer-tailed error 

distribution, which empirically corresponds to a higher frequency of detections during climatologically 

stable periods—indicating potential false alarms [50]. Although no labeled ground truth anomalies are 

available, this tendency was validated indirectly by examining the temporal consistency of alarm 

occurrences: the Autoencoder generated scattered detections even during non-transitional months with 

minimal temperature variability, unlike the LSTM-AE whose alarms clustered around documented 

seasonal transition periods [51]. This discrepancy suggests that the long-tail behavior of the AE captures 
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noise or short-lived fluctuations rather than genuine climatological anomalies, supporting the 

interpretation of increased false positives arising from its lack of sequential context [52]. 

In contrast, the LSTM-AE exhibits a more compact rec onstruction error profile with a higher 

anomaly threshold. This suggests superior robustness in filtering out natural seasonal fluctuations while 

effectively identifying genuine anomalies, owing to its inherent capacity to model long-term 

dependencies in time series. As shown in several studies, LSTM-based architectures consistently 

outperform feedforward Autoencoders in modeling complex environmental or ecological dynamics, 

particularly those with periodic or fractal characteristics [53], [54]. This temporal awareness enables 

LSTM-AE to detect abrupt shifts associated with inter-seasonal transitions—such as those observed in 

March and October in Semarang—while ignoring benign periodic changes. 

Nevertheless, the LSTM-AE is not without its challenges. Its deeper architecture leads to higher 

computational complexity, potential overfitting, and sensitivity to hyperparameters such as time 

window size, learning rate, and threshold value. Although training is resource-intensive—taking 

approximately 6 minutes and 44 seconds compared to 16 seconds for the standard Autoencoder—the 

inference phase remains lightweight, requiring only forward propagation for anomaly scoring. This 

makes the model practical for periodic or batch-based deployment in early-warning systems. The 

moderate Jaccard similarity (0.156) also supports a hybrid scheme, where the standard Autoencoder 

performs baseline monitoring and the LSTM-AE provides high-confidence alerts during transition 

periods. Such model discrepancies align with previous findings that distinct learning dynamics can yield 

non-overlapping anomaly sets, which complicates but also enhances ensemble-based validation and 

deployment [55], [56]. 

 

4. Conclusion 

This study compared Autoencoder and LSTM-Autoencoder architectures for detecting extreme 

temperature anomalies in Semarang City using daily data from 2005–2025. The LSTM-AE consistently 

identified climatologically coherent anomalies aligned with seasonal transitions, while the standard 

Autoencoder tended to capture short-term fluctuations. Sensitivity testing across the 90th, 95th, and 

99th percentile thresholds showed that results remain stable, with the 95th percentile achieving the most 

balanced trade-off between false alarms and missed detections. Although the Jaccard similarity between 

models was moderate (0.156), anomalies detected by only one model represent complementary, not 

inconsistent, signals, each reflecting distinct detection sensitivities. Moreover, several detected peaks 

coincide with historically documented extreme events—such as the 2015–2019 El Niño and 2019–2020 

transition periods—supporting the climatological validity of the proposed method [57]. 

Despite higher computational demands, the LSTM-AE remains practical for early-warning 

applications through lightweight inference and periodic deployment. Future research should extend this 

approach by incorporating additional environmental variables such as humidity, solar radiation, and 

precipitation to enhance the physical interpretability and temporal robustness of anomaly detection. 

Integrating multiple features and detection mechanisms may further strengthen the development of 

adaptive, data-driven climate early-warning systems for tropical urban environments. 
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