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Abstract. Climate change has increased the frequency and intensity of extreme weather events,
including heatwaves and cold spells, posing critical risks to public health and urban
infrastructure. This study proposes and compares two deep learning frameworks based on
Autoencoders, namely the Long Short-Term Memory Autoencoder (LSTM-AE) and the
standard Autoencoder (AE), for detecting extreme temperature anomalies using historical daily
data from 2005 to 2025 in Semarang City. Unlike conventional anomaly detection methods, the
LSTM-AE introduces temporal learning through recurrent memory cells, enabling it to capture
sequential temperature dependencies that static AE models cannot. Both models are trained to
reconstruct “normal” temperature patterns, with anomalies identified when reconstruction errors
exceed the 95th percentile threshold. The results demonstrate that the LSTM-AE more
consistently identifies significant heatwave and cold spell events, with seasonal alarm rates that
closely align with local climatic transitions. Several detected peaks coincide with historically
documented events such as the 2015-2019 El Nifio and 2019-2020 transition periods reported
by BMKG, confirming climatological relevance. In contrast, the standard AE detects a higher
number of anomalies (726 vs 366 from the LSTM-AE) but tends to generate false alarms outside
transitional periods. Model performance is evaluated using reconstruction error distributions,
Jaccard similarity indices, and monthly alarm rates. This study highlights the potential of
LSTM-based architectures for improving anomaly detection in climate data and contributes to
developing data-driven strategies for urban climate resilience in tropical regions.
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1. Introduction

In recent years, climate change has increasingly become a major global concern [1]. One of the most
evident impacts is the growing intensity and frequency of extreme weather events, such as prolonged
heatwaves, severe winters, and unpredictable shifts in rainfall patterns [2], [3]. These conditions pose
serious risks not only to ecosystems but also to key sectors, including public health [4], agriculture [5],
and the stability of urban infrastructure [6]. According to the 2024 Climate and Air Quality Report for
Indonesia released by the Badan Meteorologi Klimatologi dan Geofisika (BMKG), the country recorded
its highest annual temperature anomaly to date, with an increase of 0.8°C above the long-term average
, based on historical observations from 113 BMKG observation stations from 1981 to 2024 [7].

The city of Semarang, as one of the metropolitan areas on the northern coast of Java, faces a set of
unique challenges. Its strategic geographic location, while advantageous, also makes it vulnerable to
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urban heat island (UHI) effects, high population density, and intense economic activity—all of
which contribute to the increasingly complex impacts of extreme temperature rise. Otherwise, extreme
heatwaves and cold spells degrade quality of life, increase climate-related health risks [8], and intensify
the burden on energy and healthcare infrastructure [9], [10]. Extreme tempeture events are generally
defined as periods when daily maximum or minimum temperatures persistently exceed or fall below
the climatological normal by statistically significant margins [11], commonly identified through
percentile-based or standard deviation thresholds derived from long-term historical observations [12],
[13].

The importance of detecting extreme temperature anomalies is closely linked to the need for early
warning systems and climate adaptation policies at both local and global levels [14]. A detection system
capable of identifying anomaly patterns at an early stage allows governments and policymakers to
implement targeted adaptation measures, including optimizing public health preparedness [15],
balancing energy distribution [16], and integrating climate considerations into urban spatial planning
[17]. Furthermore, consistently detected temperature anomaly data can serve as a foundation for
developing long-term climate adaptation policies, enabling vulnerable cities like Semarang to better
prepare for increasingly unpredictable climate dynamics caused by global change.

Isolation Forest (iForest) method has been widely used in temperature anomaly detection due to its
simplicity, computational efficiency, and ability to handle large datasets without assuming any specific
data distribution. The algorithm operates by constructing random decision trees to isolate outlier data
points, where the quicker a point is isolated, the more likely it is to be an anomaly [18]. Its application
has proven effective, for instance, in detecting surface temperature anomalies in satellite imagery to
identify underground coal fires [19], as well as in detecting temperature sensor anomalies in spacecraft,
achieving high detection rates with low false alarms [20]. However, the primary limitation of iForest
lies in its inability to capture temporal or seasonal patterns, as each observation is treated independently,
without considering intertemporal relationships. This makes it less suitable for climate data, which
typically exhibit complex seasonal cycles. Therefore, while iForest is often used as a strong baseline in
temperature anomaly detection, deep learning-based approaches such as Autoencoders and LSTM-AE
(LSTM-AE) are considered more effective. These methods are capable of learning complex nonlinear
representations and long-term dependencies, resulting in more consistent detection that aligns better
with the distinct seasonal dynamics of tropical climates.

Deep learning approaches, particularly Autoencoders and LSTM-AE, are becoming increasingly
relevant for anomaly detection in daily temperature data due to their ability to capture complex patterns
and long-term dependencies in time series. An Autoencoder functions by reconstructing the input and
identifying anomalies through reconstruction error, while an LSTM-AE extends this by learning
temporal correlations, an essential feature for climate data, which often exhibit both daily and seasonal
trends [21]. Comparative studies have shown that LSTM-AE outperform standard Autoencoders,
achieving accuracy rates of up to 99% in detecting anomalies in temperature and other sensor data,
owing to their ability to retain latent representations over long input sequences [22]. Other research
confirms that LSTM-AE remain effective even when applied to real-world sensor data that are noisy,
significantly reducing both false positive and false negative rates [23]. This LSTM-AE particularly
well-suited for historical data—based daily temperature anomaly detection, especially in tropical climate
contexts characterised by distinct seasonal patterns and long-term variability.

Based on this background, the research problem is formulated as follows: how to design a framework
for detecting daily extreme temperature anomalies that can accurately identify significant deviations in
the historical climate record of Semarang City, and how to compare the performance of a standard
Autoencoder (AE) with that of an LSTM-based Autoencoder (LSTM-AE) in capturing anomalies
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related to seasonal transitions. The contributions of this study are threefold: (i) establishing a
comparative framework between AE and LSTM-AE for extreme temperature anomaly detection, (ii)
integrating reconstruction-error thresholding with seasonal evaluation metrics, and (iii) demonstrating
the applicability of deep learning methods for supporting climate adaptation in tropical urban contexts.

2. Research Method

To accurately detect extreme temperature anomalies, a model is needed that is not only capable to
process historical data, but also understand complex temporal dynamics. Therefore, this research
organized through a series of systematic stages start from pre-processing data, development deep
learning model, until evaluation model detection performance. This study utilizes daily temperature
data Semarang City from 2005-2025 which is obtained through National Centers for Enviromental
Information (NCEI), comprising 7,339 daily observation.

Table 1. Representative data used in the study.

Date TAVG TMAX  TMIN PRCP  SNOW SNWD
2005-01-01 NaN NaN NaN NaN NaN NaN
2005-01-02 83.0 NaN 77.0 0.00 NaN NaN
2005-01-03 82.0 92.0 77.0 NaN NaN NaN
2005-01-04 83.0 NaN NaN 0.43 NaN NaN
2005-01-05 82.0 NaN 78.0 NaN NaN NaN

2.1. Pre processing

The data preprocessing stage was conducted to ensure the quality and consistency of the temperature
dataset before modeling. In this study, three key daily temperature variables were utilized: average
temperature (TAVG), maximum temperature (TMAX), and minimum temperature (TMIN), as their
combination provides a more comprehensive representation of diurnal and extreme temperature
dynamics. The dataset, obtained from the National Centers for Environmental Information (NCEI), was
originally recorded in Fahrenheit, thus requiring conversion to Celsius for consistency with
climatological standards:

5
T(°C) = (T(°F) = 32) 3

@)

In addition to the unit conversion, some additional steps were also taken. Missing values (NaN) in
the daily temperature series were handled using the linear interpolation method, which estimates
missing observations based on the temporal trend between adjacent valid data point [24], [25]. This
approach preserves the continuity and smoothness of temperature variations over time, minimizing the
risk of abrupt artificial jumnps [26]. After interpolation, any remaining missing entries at the beginning
or end of the series were removed to ensure complete data integrity. Furthermore, the data is normalized
using MinMaxScaler to speed up the convergence process when training the model [27].

Specifically to the LSTM-AE model, the data is organized in the form of a 30 days time window so
that the model can learn the temporal depency pattern. Meanwhile, on a standard Autoencoder, input is
given in the form of daily data snapshots without taking into account the time sequence context.
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2.2. LSTM-Autoencoder (LSTM-AE)

The LSTM-Autoencoder architecture is designed to learn the temporal dependance of the time series of
average daily temperature [28]. The model accepts inputs of size X € R™*"*s with n;, is length of the
time window and n; number of features. On the encoder part, two layers LSTM used successively with
128 and 64 units. The first layer outputs a sequential representation hgl), while the second layer reduces
the temporal dimension to a latent vector representation z € R3? through non-linear transformation:

R = LSTMy 5900, h® = LSTMg, (h7), 2 = £ (3 W),

)

with f(-) is the activation function ReLU and W Dense layer weight.Latent representation z then
replicated along the time dimension using the RepeatVector operation, so Z € R™*32 The decoder part
projects these sequences back through two LSTM layers with 64 and 128 units, which results in a
reconstruction of the X[29]:

X = LSTM,,5(LSTMy4(Z))
3

The final output is mapped with TimeDistributed Dense layer to restore the original dimensions
(n, ny).

Model trained with Mean Absolute Error (MAE) function,

1 . n ~
L=—31 XL X=Xyl

ning

(4)

and Adam optimizer with 50 epoch and batch size 128. The number of epochs was set to provide a
balance between stability and the risk of overfitting. A batch size value of 128 was also chosen as a
compromise between computational efficiency and granularity of weight updates. Hyperparameter
tuning techniques such as grid search were not employed in this study, as the primary objective was to
compare the structural performance and anomaly detection behavior between the Autoencoder and
LSTM-AE models rather than to optimize individual model performance. Nevertheless, the selected
parameters were based on preliminary experiments that provided stable and consistent reconstruction
results.

2.3.  Autoencoder
As a baseline, this study uses a Dense layer-based Autoencoder to reconstruct daily temperature patterns
without considering temporal dependencies [30]. Input is a vector x € R% with d = ng is the number

of vectors daily temperature. The encoder architecture consists of three consecutive Dense layers with
128, 64, and 32 units which uses the activation function ReLU. Latent representation z € R32 obtained
through non-linear transformation:

RD = fGW; +by), R = f(ROW, + by), 2 = f (RO W; + by)

®)

with f(+) is function ReLU. The decorder projects back z through symmetrical layer sized 64 and 128
units, to produce a reconstruction X same dimension as the input using sigmoid activation function:
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X = O'(ZWd + bd)

(6)

Like LSTM-AE model, This model is trained with the Mean Absolute Error (MAE) (4) with Adam
optimizer.

Number of epoch also set as many as 50 and batch size 32. While a validation split of 0.1 allows for
consistent monitoring of model performance during training. Activation function usage ReLU in the
hidden layer accelerates convergence through sparsity properties [31], while the output layer uses a
sigmoid to keep the reconstructed value in the range of [0, 1] after normalization [[32].

2.4. Anomaly Detection & Evaluation

The anomaly detection stage is performed by calculating the reconstruction error between the original
input x and reconstruction output . The error is computed using Mean Absolute Error (MAE) for each
observation (4), with n; - ns is the number of features. MAE was selected instead of metrics such as
MSE or RMSE because it provides a more robust and interpretable measure of reconstruction deviation,
less sensitive to outliers that may arise from short-term fluctuation in temperature data [33], [34]. The
error distribution on the training data is used to determine the detection threshold , which is set at the
95" percentile. This value was empirically selected as it provided a balanced trade-off between detection
sensitivity and false alarm rate compared to the 90" and 99" percentile. Every observation with L > t
categorized as an extreme temperature anomaly.

Performance evaluation is done through several aspects. First, the reconstruction error distribution
is compared to assess the stability of the model [35]. Second, the humber of detected anomalies was
analyzed to identify potential false alarms, which were validated qualitatively through their alignment
with known seasonal transitions rather than labeled ground truth. Third, the alarm rate was examined
on a monthly and seasonal basis to evaluate consistency with Semarang's climatic patterns. This multi-
year dataset inherently served as a temporal cross-validation framework to ensure robustness against
overfitting to specific seasons. In addition, the similarity of anomalies detected by both models was
quantified using the Jaccard similarity index, where a higher value indicates consistent detection
behavior and a lower value reflects model complementarity that useful for policymakers to gauge
detection reliability and uncertainty [36], [37]. Although additional statistical metrics could be
incorporated, reconstruction-based evaluation and seasonal consistency are standard practices for
unsupervised climate anomaly detection. To formalize this comparison, the Jaccard similarity index is
expressed as follows:

|ANB|
|AUB|’

J(A,B) =
()

with A and B is the set of detected anomaly dates of each model.

To clarify the interpretation, the evaluation results are visualized through (i) a histogram of the
reconstruction error distribution, (ii) a temporal line chart of reconstruction errors with threshold
references, and (iii) a monthly alarm rate curve compared with the average monthly temperature. These
visualizations collectively highlight both statistical stability and temporal alignment with climatic
variations, providing a concise yet sufficient basis for distinguishing meaningful anomaly patterns
within the comparative framework of this study.
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3. Result and Discussion

Analysis of reconstruction error is fundamental in evaluating both models, namely the LSTM-AE and
the standard Autoencoder. The error distribution serves as a diagnostic indicator of the model’s ability
to reconstruct “normal” data and to distinguish it from anomalies. The underlying hypothesis is that
models with higher reconstruction accuracy should yield a more centered and consistent error
distribution [38], [39].

3.1. Result

Reconstruction Error Distribution (LSTM-AE)
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Figure 1. LSTM-AE reconstruction error distribution.

Autoencoder Reconstruction Error Distribution
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Figure 2. Autoencoder reconstruction error distribution.

The reconstruction error distributions of both models are presented in Figures 1 and 2. Although the
standard AE achieves a lower average reconstruction error (approximately 0.04—0.05) compared to the
LSTM-AE (around 0.06), this does not directly imply superior anomaly detection capability. The LSTM-
AE produces a smoother and unimodal error distribution, while the AE shows a more irregular, bimodal
pattern. This indicates that the LSTM-AE reconstructs normal patterns more consistently across temporal
variations, reducing random fluctuations that may be misinterpreted as anomalies. Thus, model superiority
in this study is determined not by lower absolute error, but by stability and discriminative capacity in
distinguishing normal from anomalous behavior [40].
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Table 1. Sensitivity of anomaly detection across percentile thresholds.

Percentile (1) Threshold Value (MAE) Detected Anomalies (n)
P-g0t" 0.0787 (LSTM-AE) / 0.0662 (AE) 726 (LSTM-AE) / 814 (AE)
P-95t 0.0836 (LSTM-AE) / 0.0686 (AE) 366 (LSTM-AE) / 421 (AE)
P-9gth 0.0937 (LSTM-AE) / 0.0749 (AE) 71 (LSTM-AE) / 89 (AE)

To assess robustness to the chosen detection thresholds, additional experiments were conducted using
the 90, 95 and 99" percentiles of the reconstruction error distributions. The 90th percentile produced
excessive detections (high false alarm potential), while the 99th percentile was overly restrictive and
missed several anomaly clusters. The 95th percentile yielded the most balanced trade-off between
sensitivity and stability; therefore, it was selected as the final threshold for both models. Empirically, the
95th percentile corresponded to approximately 5-6% of total daily observations being classified as
anomalies, which is consistent with the typical proportion of extreme temperature events reported in global
climatological studies (see Table 1). This multi-percentile testing confirms that the reported results are not
dependent on an arbitrary choice of threshold, but are consistent across a reasonable range of detection
sensitivities.

Since no labeled ground-truth anomaly data were available, false alarms were evaluated contextually
rather than through direct label comparison. Specifically, anomalies detected during climatologically
stable periods (e.g., months with typical temperature ranges) or inconsistent between models were
considered likely false positives. This approach follows established practice in unsupervised climate
anomaly studies. [41], [42]. In this context, “noise” is formally defined as short-term fluctuations in daily
temperature that remain within the normal climatological range. The standard AE, which processes each
day independently, tends to reconstruct such high-frequency variations as separate anomalies, whereas the
LSTM-AE captures temporal continuity and suppresses these noisy deviations [43], [44]. Consequently,
the LSTM-AE exhibits more robust detection behavior, maintaining consistency across seasons and
reducing the number of false alarms under otherwise normal conditions [45].

Alarm Rate vs Average Monthly Temperature (2024)
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Figure 3. Monthly alarm rate comparison in 2024.

The monthly alarm rate for 2024 reveals distinct detection behaviors between the LSTM-AE and the
standard Autoencoder. The LSTM-AE produces higher alarm rates in March (61.3%), April (33.3%),
October (38.7%), and November (30%), while other months remain close to zero. Although higher
alarm frequencies might suggest over-sensitivity, the temporal alignment of these peaks with known
seasonal transitions in Semarang indicates that these alarms correspond to climatologically meaningful
events rather than random fluctuations. The detection threshold (79s) was applied consistently across
months to control model sensitivity, confirming that the observed alarm variations arise from genuine
temperature dynamics instead of threshold bias.

When compared to the 2024 monthly average temperature (Figure 3), the alarm rate spikes generated
by the LSTM-AE align closely with periods of sharp increases or decreases in temperature, particularly
in March and October. This correspondence suggests that the model’s detections represent seasonal
transition anomalies rather than random fluctuations, reinforcing its climatological relevance. In
contrast, the standard Autoencoder fails to capture this relationship, its alarm rates are weaker, more
sporadic, and largely inconsistent with the dynamics of average temperature. Making it less reliable for
supporting climate-based early-warning systems. From an operational perspective, such clustered alarm
periods can be interpreted as transition-phase alerts, providing actionable signals for short-term heat-
health advisories, adaptive urban cooling measures, and energy demand adjustments in the city’s early-
warning framework. This translation from model output to practical insight allows policymakers to use
detection patterns as early indicators for resource planning and risk mitigation [46], [47].

The Jaccard similarity between both models is 0.156, reflecting limited but meaningful overlap.
Rather than indicating spurious detections, this divergence highlights the models’ complementary
sensitivities: the LSTM-AE captures sequence-dependent anomalies associated with seasonal
transitions [48], while the standard Autoencoder responds to short-term reconstruction deviations. This
difference arises from their architectural design, as the LSTM-AE incorporates temporal dependencies
while the AE treats each day as an independent observation. The consistent seasonal alignment of
LSTM-AE alarms confirms that its sensitivity targets meaningful climate events, not random noise.
While this study focuses on temperature anomalies, the same architecture could potentially be adapted
for other climate variables such as humidity or precipitation, provided that retraining and threshold
calibration are performed to account for their distinct temporal behaviors [49]. Consequently, the
LSTM-AE demonstrates stronger climatological coherence and practical interpretability, making it a
more suitable basis for temperature-oriented early-warning system.

3.2. Discussion

The comparative analysis between the LSTM-AE and the standard Autoencoder highlights key
distinctions in their ability to detect extreme temperature anomalies in Semarang City. While the
standard Autoencoder exhibits lower average reconstruction errors, it produces a longer-tailed error
distribution, which empirically corresponds to a higher frequency of detections during climatologically
stable periods—indicating potential false alarms [50]. Although no labeled ground truth anomalies are
available, this tendency was validated indirectly by examining the temporal consistency of alarm
occurrences: the Autoencoder generated scattered detections even during non-transitional months with
minimal temperature variability, unlike the LSTM-AE whose alarms clustered around documented
seasonal transition periods [51]. This discrepancy suggests that the long-tail behavior of the AE captures
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noise or short-lived fluctuations rather than genuine climatological anomalies, supporting the
interpretation of increased false positives arising from its lack of sequential context [52].

In contrast, the LSTM-AE exhibits a more compact rec onstruction error profile with a higher
anomaly threshold. This suggests superior robustness in filtering out natural seasonal fluctuations while
effectively identifying genuine anomalies, owing to its inherent capacity to model long-term
dependencies in time series. As shown in several studies, LSTM-based architectures consistently
outperform feedforward Autoencoders in modeling complex environmental or ecological dynamics,
particularly those with periodic or fractal characteristics [53], [54]. This temporal awareness enables
LSTM-AE to detect abrupt shifts associated with inter-seasonal transitions—such as those observed in
March and October in Semarang—while ignoring benign periodic changes.

Nevertheless, the LSTM-AE is not without its challenges. Its deeper architecture leads to higher
computational complexity, potential overfitting, and sensitivity to hyperparameters such as time
window size, learning rate, and threshold value. Although training is resource-intensive—taking
approximately 6 minutes and 44 seconds compared to 16 seconds for the standard Autoencoder—the
inference phase remains lightweight, requiring only forward propagation for anomaly scoring. This
makes the model practical for periodic or batch-based deployment in early-warning systems. The
moderate Jaccard similarity (0.156) also supports a hybrid scheme, where the standard Autoencoder
performs baseline monitoring and the LSTM-AE provides high-confidence alerts during transition
periods. Such model discrepancies align with previous findings that distinct learning dynamics can yield
non-overlapping anomaly sets, which complicates but also enhances ensemble-based validation and
deployment [55], [56].

4. Conclusion

This study compared Autoencoder and LSTM-Autoencoder architectures for detecting extreme
temperature anomalies in Semarang City using daily data from 2005-2025. The LSTM-AE consistently
identified climatologically coherent anomalies aligned with seasonal transitions, while the standard
Autoencoder tended to capture short-term fluctuations. Sensitivity testing across the 90th, 95th, and
99th percentile thresholds showed that results remain stable, with the 95th percentile achieving the most
balanced trade-off between false alarms and missed detections. Although the Jaccard similarity between
models was moderate (0.156), anomalies detected by only one model represent complementary, not
inconsistent, signals, each reflecting distinct detection sensitivities. Moreover, several detected peaks
coincide with historically documented extreme events—such as the 2015-2019 EI Nifio and 2019-2020
transition periods—supporting the climatological validity of the proposed method [57].

Despite higher computational demands, the LSTM-AE remains practical for early-warning
applications through lightweight inference and periodic deployment. Future research should extend this
approach by incorporating additional environmental variables such as humidity, solar radiation, and
precipitation to enhance the physical interpretability and temporal robustness of anomaly detection.
Integrating multiple features and detection mechanisms may further strengthen the development of
adaptive, data-driven climate early-warning systems for tropical urban environments.
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