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Abstract. Plastic waste pollution in the oceans remains a global problem. Kuta Beach is one of 

Bali's tourist destinations that has been affected by plastic waste pollution. This is not in line 

with the 14th SDGs, which is to prevent and reduce marine debris pollution. However, the 

marine debris monitoring process carried out by the Ministry of Environment and Forestry 

requires officers to conduct direct monitoring in the field, which incurs higher costs. Therefore, 

satellite imagery can be an alternative option for more effective and efficient marine debris 

detection. This study aims to detect marine debris on Kuta Beach using machine learning 

algorithms, namely Random Forest (RF), XGBoost, and LightGBM. This study uses the Marine 

Debris Archive (MARIDA) dataset, which has marine debris labels, and Sentinel-2 images of 

Kuta Beach from 2019–2023. The LightGBM algorithm provided the best performance in 

detecting marine debris with an F1-score of 95.16%. The area detected as marine debris on Kuta 

Beach in 2019–2023 was 500 m2, 0 m2, 100 m2, 300 m2, and 400 m2, respectively. Based on 

these results, marine debris is generally detected around the coastline, particularly in the 

southern area of Kuta Beach, which is located near a shopping center. 
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1. Introduction 

One of the biggest causes of environmental degradation is plastic waste [1].  The use of single-use 

plastics has increased 20-fold during the past 50 years [2].  However, appropriate waste management 

has not kept pace with this situation [3].  Accordingly, between 19 and 23 million metric tons of plastic 

waste wind up damaging the environment, especially aquatic areas [3], [4].  One item that is hard to 

break down is plastic. It is estimated that plastic waste in the ocean will take 292 years to fully degrade 

[5]. 

Indonesia is one of the countries that contributes significantly to plastic waste pollution in the world 

[6], [7]. Due to urbanization, high population density, and a variety of coastal activities, urban coastal 

areas are particularly susceptible to marine debris pollution [8]. One place that is susceptible to this 

issue is Bali. Bali has become a destination that attracts many tourists. It is recorded that the number of 

tourists visiting Bali in 2024 will reach 6.31 million foreign tourist visits [9] and 10.12 million domestic 

tourist visits [10]. The possibility of environmental pollution is increased by the high level of tourism, 

particularly along Bali's shore [11], [12]. This is reinforced by the results of marine debris monitoring 

conducted by the Indonesian Ministry of Environment and Forestry in 2021, which showed that there 

were 12.82 grams of plastic waste per square meter on the beaches of Badung Regency [13]. Based on
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 this data, plastic waste is the most dominant type of marine debris. In addition, the results of marine 

debris monitoring in 2023 show that Badung Regency, Bali, is the location with the highest abundance 

of microplastics in seawater, reaching 91.22 particles/m3 [14]. Based on the results of this monitoring, 

marine debris on the beaches of Badung Regency, including Kuta Beach, remains a challenge.   

Ocean contamination from marine debris can have detrimental effects on a number of factors.  Ocean 

pollution from plastic debris can harm marine ecosystems and disturb the lifestyles of organisms [15], 

[16], [17].  The economy may be impacted as well. Plastic waste pollution can reduce fishermen's 

catches and decrease the tourist appeal of polluted beaches [18].  As a result, the United Nations (UN) 

has made this issue one of its global priorities under the Sustainable Development Goals (SDGs).  One 

of the targets in goal 14 of the SDGs is to prevent and reduce various types of marine pollution, 

including marine debris. 

Accurate detection and monitoring of marine debris in the ocean remains a challenge to this day 

[19]. The use of remote sensing with geospatial data using a machine learning approach has been 

developed to enable more efficient monitoring [19], [20]. The limited availability of actual datasets for 

detecting marine debris using satellite imagery led previous researchers to develop an open-access 

dataset called the Marine Debris Archive Dataset (MARIDA) [21]. MARIDA provides annotations on 

Sentinel-2 imagery at the pixel level, which can be used as a benchmark for marine debris detection. 

The spectral behavior captured by satellite images can be used to distinguish marine debris from other 

objects [22]. Previous study used a combination of several spectral composite indices, including the 

Normalized Difference Vegetation Index (NDVI), Normalized Difference Water Index (NDWI), 

Floating Algae Index (FAI), Floating Debris Index (FDI), Shadow Index (SI), Bare Soil Index (BSI), 

and NRD [21]. In this case, the FDI index is used to detect plastic waste floating in the ocean. In 

addition, there is a study that developed the Adjusted Plastic Index (API), which is capable of 

distinguishing plastic waste mixed with other land cover [20]. 

Although it has not been well investigated, the use of machine learning algorithms to identify marine 

debris in the ocean holds a lot of promise [19]. Thus, the purpose of this project is to use machine 

learning techniques using Sentinel-2 satellite image data and the publicly available MARIDA dataset 

to identify marine debris in the Kuta Beach area of Bali. To find out if there was marine debris on Kuta 

Beach, three classification algorithms were employed: Random Forest (RF), Extreme Gradient-

Boosting Machine (XGBoost), and Light Gradient-Boosting Machine (LightGBM). These algorithms 

are used because they have been proven to perform well in detecting plastic waste using satellite 

imagery [20], [23], [24]. This study also looked at characteristics that are crucial for differentiating 

marine debris from other items. This study contributes by integrating various spectral indices derived 

from Sentinel-2 imagery with an machine learning model to identify marine debris in tropical coastal 

environments. Previous studies have mostly used the Floating Debris Index (FDI) with the Normalized 

Difference Vegetation Index (NDVI) to detect the presence of marine debris [19], [21], [22]. Therefore, 

this study attempts to add the Adjusted Plastic Index (API) feature, which is considered better at 

separating marine debris from vegetation and land cover [20]. 

2. Methodology 

2.1. Study area 

2.1.1. Case study area 

The case study area for this research is Kuta Beach, located in Badung Regency, Bali. This research 

classifies marine debris detected in the Kuta Beach area from 2019 to 2023 at the pixel level. The image 

of Kuta Beach for each year has 65,268 pixels covering the area from the water to the coastline. The 

area covers the coastal region and waters of Kuta Beach, as shown in Figure 1.  
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Figure 2. Map of Kuta Beach study area 

2.1.2. Supporting study area 

The training and testing sets were using publicly available data from the Marine Debris Archive 

(MARIDA). As indicated in Table 1, MARIDA offers 837,377 annotated pixels categorized into 15 

classes.  Due to their comparable spectral behavior, the Wakes, Cloud Shadows, Waves, and Mixed 

Water classes were combined into the Marine Water class in this study, aggregating the MARIDA 

dataset classes into 11 classes [21]. MARIDA was collected from 2015 to 2021 in eleven countries, 

namely Honduras, Guatemala, Haiti, Santo Domingo, Vietnam, South Africa, Scotland, Indonesia, the 

Philippines, South Korea, and China. Bali is one of the locations covered in the MARIDA dataset, so 

the characteristics of marine debris found on Kuta Beach can be represented. There is so much variance 

in the supporting regional data, which is dispersed over numerous countries, that machine learning 

models have more to learn during the data training process. 

 

Table 1. MARIDA dataset thematic classes. 

Class Description 
Number of 

pixels 

Marine Debris  
Floating polymers, such as plastics, and a mixture of 

man-made waste 
3,399 

Dense Sargassum Dense floating Sargassum macroalgae 2,797 

Sparse Sargassum Sparse floating Sargassum macroalgae 2,357 

Natural Organic Material Vegetation and wood 864 

Ship Sailing and anchored vessels 5,803 

Clouds Clouds including thin clouds 117,400 

Marine Water Clear water 129,159 

Sediment-Laden Water Brown-colored discharges from high-sediment rivers 372,937 
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Foam 
Foam captured near riverbanks or areas where waves 

break the coast 
1,225 

Turbid Water Turbid waters close to coastal areas 157,612 

Shallow Water Coral reefs and submerged vegetation in coastal waters 17,369 

Waves Waves 5,827 

Cloud Shadows  Cloud shadows 11,728 

Wakes Wakes and waves from a sailing vessel 8,490 

Mixed Water Water close to materials that float 410 

Total 837,377 

2.2. Data sources 

2.2.1. Case study area data 

The Google Earth Engine (GEE) platform provided the Sentinel-2 satellite imaging data for the Kuta 

Beach region. Sentinel-2 was chosen because it is freely accessible and its spectral bands has been 

proven capable of detecting marine debris [22], [25]. To provide maximum detail in marine debris 

detection, the images used have the highest spatial resolution of Sentinel-2, which is 10 meters. After 

being prepared in shapefile format, the Kuta Beach region of interest (ROI) was loaded into the GEE 

code editor. To reduce the impact of clouds, a cloud masking function was applied to the imagery 

acquired using GEE. To further address the potential for noise in the data, the median approach was 

used to create annual aggregate statistics for the 2019–2023 timeframe.  

 

2.2.2. Supporting study area data 

The MARIDA dataset was obtained from the Zenodo online repository. MARIDA was collected over 

a period of seven years, from 2015 to 2021. MARIDA has developed a marine debris label obtained by 

acquiring Sentinel-2 imagery with ground-truth observations and literature studies. Experts in image 

interpretation used information from waste reports, Sentinel-2 satellite photos, very high-resolution 

Planet satellite images, and the spectral behavior of ocean objects to annotate the MARIDA dataset. 

2.3. Modelling  

2.3.1. Model development 

This study uses three algorithms with the ensemble method, namely RF [26], XGBoost [27], and 

LightGBM [28]. These algorithms are capable of improving model performance by combining the 

prediction results from several estimators [29]. The three algorithms were chosen because they have 

been proven to perform well in marine debris detection cases.  

In combining data, RF uses the bagging algorithm and then uses decision trees to train each 

combined group [30]. Each tree is trained on a smaller, randomly selected subset of data so that random 

forests are able to handle large, high-dimensional data. Based on previous research, RF has been proven 

to perform well in various cases, including in the case of marine debris detection [19], [20], [21], [31], 

[32], [33]. 

XGBoost performs gradient boosting incrementally by improving the error generated in the 

previously built model. Thus, XGBoost has good scalability in all scenarios [27]. XGBoost was also 

used on synthetic plastic debris data with Generative Adversarial Networks (GANs), yielding results 

that showed the model was able to distinguish plastic waste from other features [23]. 



  

 

 

171 
 

F.F.Nasir, R. Kurniawan 

 

LightGBM uses gradient-based one-sided sampling and exclusive feature bundling, which speeds 

up the data training process [28]. This makes LightGBM more efficient in terms of memory, cost, and 

data training time [34]. In the case of plastic waste detection, LightGBM has proven to be efficient and 

provides high accuracy [24]. 

Model development using RF and LightGBM was built using class weighting and without class 

weighting. Class weighting was used to handle imbalanced data, which gives weights that are inversely 

proportional to class frequency. This weighting ensures that prediction errors in minority classes are 

calculated as greater in the loss calculation, thereby helping the model to not ignore classes that rarely 

appear. Meanwhile, the XGBoost model has been proven to perform well in cases of imbalanced data 

[35]. The XGBoost model does not have a class_weight parameter, so the sample_weight parameter is 

used to weight each sample based on the confidence level in the labeling. 

In maximizing the performance of each model, this study conducted parameter optimization using 

Bayesian optimization (BO). In BO, evaluation points are selected using an acquisition function to 

maximize the model [36]. In this way, BO ensures that optimization does not only concentrate on areas 

with good results but also explores areas that have not been studied much in order to find optimal 

solutions. Selection of the best model based on the evaluation metrics of each model. Model 

performance was evaluated using accuracy, precision, recall, and F1-score metrics using macro-

averaging. Macro-averaging is used in this study so that model performance could be assessed fairly 

without being influenced by classes with a larger number of samples [37]. The best model obtained was 

then applied for implementation in the Kuta Beach study area. For clarity, the research workflow is 

shown in Figure 2. 

 

Figure 3. Research workflow diagram 

2.3.2. Features 

In detecting marine debris, this study uses the Floating Debris Index (FDI) [22] and the Adjusted Plastic 

Index (API) [20]. In addition, other indices are used to distinguish between marine debris and other 

objects in the ocean. The Normalized Difference Vegetation Index (NDVI), Floating Algae Index (FAI), 

and Near Infrared-Red Difference (NRD) are used to detect vegetation and macroalgae. The Normalized 

Difference Water Index (NDWI) and Normalized Difference Moisture Index (NDMI) are used to 

identify water features. The Shadow Index (SI) and Bare Soil Index (BSI) are used to separate bright 

objects on the earth's surface. In addition, the values of the Sentinel-2 spectral bands are also used to 

maximize the model in separating existing classes, including bands 1 to 10 [21]. 
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3. Result  

3.1. Model development results 

After finding the optimal parameter values, each model was trained and then compared based on 

accuracy, precision, recall, and F1-score values. Table 2 shows the model performance on the training 

set and testing set without additional handling on RF and LightGBM for imbalance cases. In both the 

training data and testing data, the RF algorithm provided the best evaluation values compared to other 

algorithms. 

Table 2. Model performance on training and testing data without additional handling for data 

imbalance. 

Data Model 
Evaluation Metrics (%) 

Accuracy Precision Recall F1-score 

Training 

Random Forest 99.81 99.34 98.24 98.78 

XGBoost 98.76 95.28 92.10 93.58 

LightGBM 90.95 78.69 71.83 73.80 

Testing 

Random Forest 99.01 95.07 92.46 93.68 

XGBoost 98.47 93.21 89.98 91.49 

LightGBM 90.86 76.45 70.74 72.40 

 

Table 3 shows the model performance after additional handling of imbalanced data using class 

weighting on RF and LightGBM. The results show that LightGBM provides the best performance. This 

is because LightGBM has better scalability, making it suitable for large datasets. 

Table 3. Model performance on training and testing data without additional handling for data 

imbalance. 

Data Model 
Evaluation Metrics (%) 

Accuracy Precision Recall F1-score 

Training 

Random Forest 99.74 97.65 99.68 98.61 

XGBoost 98.76 95.28 92.10 93.58 

LightGBM 99.77 99.58 99.87 99.72 

Testing 

Random Forest 98.92 92.67 93.89 93.19 

XGBoost 98.47 93.21 89.98 91.49 

LightGBM 99.18 94.82 95.53 95.16 

 

In both training and testing data, LightGBM, the model with the greatest performance, displayed 

high values. To detect possible overfitting in the model, a check was performed using a learning curve.  

To provide more reliable model generalization, stratified 5-fold cross-validation was used to generate 

the learning curve. The accuracy learning curve against training size from LightGBM is displayed in 
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Figure 3.  According to the chart, the training score's accuracy is extremely high and keeps rising as the 

volume of training data increases. Meanwhile, the accuracy of the cross-validation score is above 0.95. 

This accuracy value is slightly lower than the training score. However, the gap in accuracy between the 

training score and the cross-validation score is not significant. This indicates that the LightGBM model 

is still capable of making good predictions on new data. Therefore, the LightGBM learning curve plot 

does not show any severe overfitting and demonstrates the model's ability to generalize on new data. 

 

 

Figure 4. Learning curve of LightGBM 

 

The model was also assessed using each current class in order to ascertain how well it predicted each 

class. The LightGBM model's performance for each class in the training and testing data is displayed 

in Tables 4 and 5, respectively. These two tables demonstrate how effectively the LightGBM model 

predicts each current class in both training and testing data.  With an F1-score of 92.62%, the LightGBM 

model successfully predicted the marine debris class in the testing set. 

 

 

 

 

 

Table 4. LightGBM performance by class on training data. 

Class 
Evaluation Metrics (%) 

Precision Recall F1-score 

Clouds  99,22 99,23 99,23 

Dense Sargassum 100 100 100 

Foam  99,49 100 99,75 

Marine Debris  99,02 100 99,51 
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Marine Water  99,43 99,31 99,37 

Natural Organic Material 100 100 100 

Sediment-Laden Water 100 100 100 

Shallow Water 99,91 100 99,95 

Ship 98,49 100 99,24 

Sparse Sargassum 99,84 100 99,92 

Turbid Water 100 100 100 

 

Table 5. LightGBM performance by class on testing data. 

Class 
Evaluation Metrics (%) 

Precision Recall F1-score 

Clouds  98,08 98,05 98,06 

Dense Sargassum 96,63 97,32 96,97 

Foam  85,34 92,65 88,85 

Marine Debris  91,17 94,12 92,62 

Marine Water  98,31 98,12 98,21 

Natural Organic Material 92,07 87,28 89,61 

Sediment-Laden Water 100 99,99 100 

Shallow Water 98,14 98,85 98,49 

Ship 90,41 90,18 90,30 

Sparse Sargassum 93,10 94,48 93,78 

Turbid Water 99,82 99,83 99,82 

 

LightGBM model classification errors can be seen based on the confusion matrix. Figure 4 shows 

that the LightGBM model is best at distinguishing the Sediment-Laden Water class from other classes. 

This is in line with the high evaluation score for the Sediment-Laden Water class. For the Marine Debris 

class, the model was able to correctly predict 640 pixels. The model still made classification errors in 

several classes. For the Marine Debris class, there were 62 false positives, most of which originated 

from the Ship and Natural Organic Material classes. In addition, there were 40 false negatives, some of 

which originated from the Ship class. A total of 15 pixels with the Ship class were predicted as Marine 

Debris, and 13 pixels with the Marine Debris class were predicted as Ship. This is because there is a 

similarity in spectral behavior between the Marine Debris class and the Ship class. 
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Figure 5. Confusion matrix of LightGBM 

 

In machine learning modeling, there are variables that play a more dominant role in the model that 

is formed. The feature importance value shows how much a variable contributes to distinguishing the 

11 classes predicted by the model. Based on Figure 5, NDWI is the most influential variable in 

distinguishing the existing classes with a gain importance value of 2489121.7. The gain importance 

value shows how much NDWI contributes to reducing uncertainty (impurity) in each split of the 

decision tree built by the LightGBM model. The higher the gain value, the more frequently and 

effectively the variable is used by the LightGBM model to separate data into different classes. This 

means that NDWI is the feature that provides very significant information for the model in 

distinguishing marine debris classes from other objects such as seawater and surrounding coastal 

objects. 
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Figure 6. Feature importance value of each feature in LightGBM 

3.2. Implementation of machine learning model in the Kuta Beach area 

Based on the best model, LightGBM, predictions were made for plastic waste in the Kuta Beach area 

for 2019–2023. A visualization of the prediction results for Kuta Beach is shown in Figure 6. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 



  

 

 

177 
 

F.F.Nasir, R. Kurniawan 

 

 
(e) 

Figure 7. Visualization of predicted results for Kuta Beach in 2019 (a), 2020 (b), 2021 (c), 2022 (d), 

and 2023 (e) 

 

Based on Figure 6, it can be seen that the prediction results for each year are dominated by natural 

objects. In 2019–2023, the classes most frequently detected by the model were water classes, namely 

Shallow Water, Marine Water, and Turbid Water. Although the prediction results were dominated by 

natural features, the model was able to detect the presence of plastic waste in the Kuta Beach area. The 

number of pixels predicted for Kuta Beach in each class is shown in Table 6. 

Table 6. Number of pixels predicted based on class and year. 

Class 
Year 

2019 2020 2021 2022 2023 

Clouds 6704 8865 15717 3480 10594 

Dense Sargassum 658 1060 692 1292 641 

Foam 1155 1345 381 560 776 

Marine Debris 5 0 1 3 4 

Marine Water 3084 7094 9256 4519 8171 

Natural Organic Material 328 866 1134 1890 341 

Sediment-Laden Water 49 92 9 34 56 

Shallow Water 43952 39982 28134 46626 31401 

Ship 5529 4734 3637 4156 5432 

Sparse Sargassum 1 0 1 11 0 

Turbid Water 4599 2026 7102 3493 8648 

 

Figure 7 shows a bar chart of the number of pixels detected as marine debris on Kuta Beach in 2019–

2023. There were 5 pixels detected as marine debris on Kuta Beach in 2019. This means that in 2019, 

there were approximately 500 m2 of Kuta Beach area polluted by plastic waste. In 2020, the model did 

not detect the presence of pixels predicted to be marine debris on Kuta Beach. This is in line with the 

policy related to the implementation of Large-Scale Social Restrictions (PSBB) during the COVID-19 
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pandemic. The PSBB policy reduced tourism activity on Kuta Beach, which may have led to a decrease 

in the amount of waste originating from tourism activities. In 2021, the number of marine debris pixels 

detected on Kuta Beach increased again to 1 pixel or 100 m2. The increase in the number of marine 

debris pixels detected from 2020 to 2021 may be due to the recovery of community activities in the 

Kuta Beach area. In 2022 and 2023, there was a consecutive increase in the number of marine debris 

pixels detected, namely 3 pixels (300 m2) and 4 pixels (400 m2), respectively. 

 

 

Figure 8. Area of marine debris detected on Kuta Beach from 2019 to 2023 

 

4. Discussion 

Based on the detection results in the case study area, the area of marine debris on Kuta Beach in 2019–

2023 ranged from 100 m2 to 500 m2. These findings are consistent with the results of previous study 

which showed that plastic waste accounted for 26.6% of the total composition of waste polluting Kuta 

Beach [38]. This finding is also in line with previous research with a broader context, in which Indonesia 

was identified as one of the main contributors of plastic waste to the oceans globally [39]. This provides 

evidence that the problem of plastic waste on Kuta Beach is a consistent problem and a long-term issue 

that has not been fully resolved. However, because Sentinel-2 has a spatial resolution of 10 m, debris 

spots smaller than a full pixel can still be detected through subpixel response, where the debris partially 

covers a pixel but can still be distinguished spectrally from the surrounding water. Similar to previous 

studies, marine debris pixels often contain a mixture of water and debris material, indicating that 

detection can occur at the subpixel level. In other words, debris occupying approximately 30–55% of 

the pixel area can still be identified through its characteristic spectral response [22]. 

This study shows that in 2020, no marine debris was detected on Kuta Beach. These results are 

thought to be a direct impact of the COVID-19 pandemic and the accompanying global restrictions on 

activities. The phenomenon of clean coastal areas due to lockdowns did not only occur on Kuta Beach. 

Research by Okuku et al. (2021) found a similar effect, showing that limited community movement 

during the COVID-19 pandemic led to a significant decrease in the amount of marine debris on beaches 

in Kenya [40]. This is also in line with research by Sari et al. (2022), which shows that the amount of 

waste at tourist sites is directly proportional to the number of tourist visits [41]. 

This study demonstrates the potential of Sentinel-2 imagery and the use of the open-access MARIDA 

dataset in identifying marine debris along coastal areas such as Kuta Beach. This approach offers a cost-

effective and easily accessible alternative to very high-resolution data, while maintaining reasonable 
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accuracy in classifying various coastal features. This study attempted to use the API [20] spectral index. 

However, the API did not show a particularly high feature importance value.  

In this study, Sentinel-2 satellite imagery with a spatial resolution of 10 m was used. Therefore, the 

detection results were less capable of detecting plastic waste that was very small in size. Further research 

related to marine debris detection is recommended to add satellite image data sources in model training 

using data that has more knowledge in detecting marine debris. In addition, to ensure that marine debris 

detection is carried out more optimally, further research can use images with much higher spatial 

resolution (e.g., WorldView-3 or PlanetScope) or UAV data. 

 

5. Conclusion 

Based on the results of the research conducted, the area detected as marine debris on Kuta Beach in 

2019–2023 was 500 m2, 0 m2, 100 m2, 300 m2, and 400 m2, respectively. Based on these results, marine 

debris is generally detected around the coastline, particularly in the southern area of Kuta Beach, which 

is located near a shopping center. The use of the open-access MARIDA dataset based on Sentinel-2 

shows good performance that can be applied in various locations, including the Kuta Beach area. The 

results of marine debris detection at Kuta Beach from 2019 to 2023 can be a more efficient alternative 

for identifying locations on the beach that are more likely to be polluted by marine debris. Thus, this 

study can support relevant parties such as the Ministry of Environment and Forestry, environmental 

agencies, tourism area managers, and environmental communities in designing more targeted and 

efficient marine debris mitigation strategies in coastal areas. 

 

References 

[1] S. L. Wright and F. J. Kelly, “Plastic and Human Health: A Micro Issue?,” Environ. Sci. Technol., vol. 51, no. 12, 

pp. 6634–6647, 2017, doi: 10.1021/acs.est.7b00423. 

[2] T. R. Walker and L. Fequet, “Current trends of unsustainable plastic production and micro(nano) plastic pollution,” 

Trends Anal. Chem., vol. 160, 2023, doi: 10.1016/j.trac.2023.116984. 

[3] M. G. Kibria, N. I. Masuk, R. Safayet, H. Q. Nguyen, and M. Mourshed, “Plastic Waste: Challenges and 

Opportunities to Mitigate Pollution and Effective Management,” Int. J. Environ. Res., vol. 17, no. 1, Feb. 2023, doi: 

10.1007/s41742-023-00507-z. 

[4] C. J. Rhodes, “Plastic pollution and potential solutions,” Sci. Prog., vol. 101, no. 3, pp. 207–260, 2018, doi: 

10.3184/003685018X15294876706211. 

[5] X. Zhang and X. Peng, “How long for plastics to decompose in the deep sea?,” Geochemical Perspect. Lett., vol. 

22, pp. 20–25, 2022, doi: 10.7185/geochemlet.2222. 

[6] L. C. M. Lebreton, J. Van Der Zwet, J. W. Damsteeg, B. Slat, A. Andrady, and J. Reisser, “River plastic emissions 

to the world’s oceans,” Nat. Commun., vol. 8, pp. 1–10, 2017, doi: 10.1038/ncomms15611. 

[7] L. J. J. Meijer, T. van Emmerik, R. van der Ent, C. Schmidt, and L. Lebreton, “More than 1000 rivers account for 

80% of global riverine plastic emissions into the ocean,” Sci. Adv., vol. 7, no. 18, pp. 1–13, 2021, doi: 

10.1126/sciadv.aaz5803. 

[8] N. Yoshioka, M. Era, and D. Sasaki, “Towards integration of climate disaster risk and waste management: A case 

study of urban and rural coastal communities in the Philippines,” Sustain., vol. 13, no. 4, pp. 1–16, 2021, doi: 

10.3390/su13041624. 

[9] BPS, International Visitor Arrivals Statistics 2024. 2025. 

[10] BPS, “Number of Domestic Visitor to Bali by Month, 2004-2024.” [Online]. Available: 

https://bali.bps.go.id/id/statistics-table/1/MjkjMQ==/kunjungan-wisatawan-domestik-ke-bali-per-bulan-2004-

2018.html 

[11] K. L. Chong, “The side effects of mass tourism: the voices of Bali islanders,” Asia Pacific J. Tour. Res., vol. 25, no. 

2, pp. 157–169, 2020, doi: 10.1080/10941665.2019.1683591. 

[12] I. M. W. Widyarsana, M. A. Priyanka, and L. A. Devianto, “Solid Waste Analysis and Processing Potential in the 

Tourism Sector: Case Study in Nusa Dua, South Kuta, Bali,” Indones. J. Urban Environ. Technol., vol. 5, no. 2, pp. 

181–192, 2022, doi: 10.25105/urbanenvirotech.v5i2.13538. 



  

 

 

180 
 

F.F.Nasir, R. Kurniawan 

 

[13] KLHK, “Performance Report 2021,” 2022. 

[14] Kementerian Lingkungan Hidup Dan Kehutanan, “Performance Report 2024,” 2024. 

[15] D. Brennecke, K. Knickmeier, I. Pawliczka, U. Siebert, and M. Wahlberg, Marine Mammals A Deep Dive into the 

World of Science. Springer, 2023. doi: 10.1007/978-3-031-06836-2. 

[16] S. C. Gall and R. C. Thompson, “The impact of debris on marine life,” Mar. Pollut. Bull., vol. 92, no. 1–2, pp. 170–

179, 2015, doi: 10.1016/j.marpolbul.2014.12.041. 

[17] A. Isdianto et al., “The Occurrence of Marine Debris and Its Impacts on Coral Reefs in the Sempu Island Nature 

Reserve, Malang, Indonesia,” J. Ecol. Eng., vol. 25, no. 9, pp. 70–80, 2024, doi: 10.12911/22998993/190514. 

[18] S. Arabi and A. Nahman, “Impacts of marine plastic on ecosystem services and economy: State of South African 

research,” S. Afr. J. Sci., vol. 116, no. 5–6, pp. 1–7, 2020, doi: 10.17159/sajs.2020/7695. 

[19] S. Sannigrahi, B. Basu, A. S. Basu, and F. Pilla, “Development of automated marine floating plastic detection 

system using Sentinel-2 imagery and machine learning models,” Mar. Pollut. Bull., vol. 178, May 2022, doi: 

10.1016/j.marpolbul.2022.113527. 

[20] A. D. Sakti et al., “Identification of illegally dumped plastic waste in a highly polluted river in Indonesia using 

Sentinel-2 satellite imagery,” Sci. Rep., vol. 13, no. 1, Dec. 2023, doi: 10.1038/s41598-023-32087-5. 

[21] K. Kikaki, I. Kakogeorgiou, P. Mikeli, D. E. Raitsos, and K. Karantzalos, “MARIDA: A benchmark for Marine 

Debris detection from Sentinel-2 remote sensing data,” PLoS One, vol. 17, no. 1 January, Jan. 2022, doi: 

10.1371/journal.pone.0262247. 

[22] L. Biermann, D. Clewley, V. Martinez-Vicente, and K. Topouzelis, “Finding Plastic Patches in Coastal Waters 

using Optical Satellite Data,” Sci. Rep., vol. 10, no. 1, pp. 1–10, 2020, doi: 10.1038/s41598-020-62298-z. 

[23] M. M. Duarte and L. Azevedo, “Automatic Detection and Identification of Floating Marine Debris Using 

Multispectral Satellite Imagery,” IEEE Trans. Geosci. Remote Sens., vol. 61, 2023, doi: 

10.1109/TGRS.2023.3283607. 

[24] N. Taggio et al., “A Combination of Machine Learning Algorithms for Marine Plastic Litter Detection Exploiting 

Hyperspectral PRISMA Data,” Remote Sens., vol. 14, no. 15, Aug. 2022, doi: 10.3390/rs14153606. 

[25] K. Topouzelis, A. Papakonstantinou, and S. P. Garaba, “Detection of floating plastics from satellite and unmanned 

aerial systems (Plastic Litter Project 2018),” Int. J. Appl. Earth Obs. Geoinf., vol. 79, no. January, pp. 175–183, 

2019, doi: 10.1016/j.jag.2019.03.011. 

[26] L. Breiman, “Random Forests,” Mach. Learn., vol. 45, pp. 5–32, 2001, doi: doi.org/10.1023/A:1010933404324. 

[27] T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting system,” in Proceedings of the ACM SIGKDD 

International Conference on Knowledge Discovery and Data Mining, Association for Computing Machinery, Aug. 

2016, pp. 785–794. doi: 10.1145/2939672.2939785. 

[28] G. Ke et al., “LightGBM: A Highly Efficient Gradient Boosting Decision Tree,” in Neural Information Processing 

Systems, 2017. [Online]. Available: https://github.com/Microsoft/LightGBM. 

[29] G. Kunapuli, Ensemble Methods for Machine Learning. Manning Publication, 2022. 

[30] Q. Xu and J. Yin, “Application of Random Forest Algorithm in Physical Education,” Sci. Program., vol. 2021, 

2021, doi: 10.1155/2021/1996904. 

[31] T. Acuña-Ruz et al., “Anthropogenic marine debris over beaches: Spectral characterization for remote sensing 

applications,” Remote Sens. Environ., vol. 217, pp. 309–322, Nov. 2018, doi: 10.1016/j.rse.2018.08.008. 

[32] Á. Pérez-García, T. H. M. van Emmerik, A. Mata, P. F. Tasseron, and J. F. López, “Efficient plastic detection in 

coastal areas with selected spectral bands,” Mar. Pollut. Bull., vol. 207, Oct. 2024, doi: 

10.1016/j.marpolbul.2024.116914. 

[33] K. Sasaki, T. Sekine, L. J. Burtz, and W. J. Emery, “Coastal Marine Debris Detection and Density Mapping With 

Very High Resolution Satellite Imagery,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol. 15, pp. 6391–6401, 

2022, doi: 10.1109/JSTARS.2022.3193993. 

[34] B. Quinto, Next-generation machine learning with spark: Covers XGBoost, LightGBM, Spark NLP, distributed 

deep learning with keras, and more. Apress Media LLC, 2020. doi: 10.1007/978-1-4842-5669-5. 

[35] S. B. S. Lai, N. H. N. B. M. Shahri, M. B. Mohamad, H. A. B. A. Rahman, and A. Bin Rambli, “Comparing the 

performance of adaboost, xgboost, and logistic regression for imbalanced data,” Math. Stat., vol. 9, no. 3, pp. 379–

385, 2021, doi: 10.13189/ms.2021.090320. 

[36] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. De Freitas, “Taking the human out of the loop: A review 

of Bayesian optimization,” Jan. 01, 2016, Institute of Electrical and Electronics Engineers Inc. doi: 

10.1109/JPROC.2015.2494218. 

[37] J. Opitz, “A Closer Look at Classification Evaluation Metrics and a Critical Reflection of Common Evaluation 

Practice,” Trans. Assoc. Comput. Linguist., vol. 12, pp. 820–836, 2024, doi: 10.1162/tacl_a_00675. 

[38] A. Attamimi, N. P. Purba, S. R. Anggraini, S. A. Harahap, and S. Husrin, “Investigation of Marine Debris in Kuta 

Beach, Bali Semeidi Husrin Ministry of Marine Affairs and Fisheries,” in Proceedings of Environmental 

Engineering and Water Technology, Integrated Water System and Governance, Water Science and Engineering, 

2015. [Online]. Available: https://www.researchgate.net/publication/336486249 



  

 

 

181 
 

F.F.Nasir, R. Kurniawan 

 

[39] J. R. Jambeck et al., “Plastic waste inputs from land into the ocean,” Science (80-. )., vol. 347, no. 6223, pp. 768–

771, Feb. 2015, doi: 10.1126/science.1260352. 

[40] E. Okuku et al., “The impacts of COVID-19 pandemic on marine litter pollution along the Kenyan Coast: A 

synthesis after 100 days following the first reported case in Kenya,” Mar. Pollut. Bull., vol. 162, no. September, p. 

111840, 2021, doi: 10.1016/j.marpolbul.2020.111840. 

[41] M. M. Sari, I. W. K. Suryawan, B. S. Ramadan, I. Y. Septiariva, and S. Notodarmojo, “Marine Debris Management 

in the Parangtritis Beach Tourism Area, Yogyakarta during Covid-19 Pandemic,” Nat. Environ. Pollut. Technol., 

vol. 21, no. 3, pp. 1183–1190, 2022, doi: 10.46488/NEPT.2022.v21i03.023. 


	Detecting Marine Debris Using Sentinel-2 Satellite Images (Case Study: Kuta Beach, Bali)

