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Abstract. Quickly identifying anomalies in rotating machinery is crucial for safety and
profitability in contemporary industry (Industry 5.0). Unidentified failures can cause costly
malfunctions and production interruptions. This research proposes an innovative strategy based
on Transformer for the analysis of multidimensional vibration events (VIBT), with a view to
early and accurate detection of anomalies in rotating machinery. The goal is to minimize
production interruptions in Industry 5.0. The study highlights the limitations of conventional
vibration analysis approaches and traditional deep learning techniques, emphasizing the need
for innovative solutions. VIBT incorporates transformers and a filter bank convolution (FBC)
module for effective denoising, as well as an adaptive wavelet transformation (WTA)
mechanism for dynamic feature fusion at various scales, thereby addressing the challenges
posed by non-stationary and noisy signals. Extensive testing on the Mafaulda dataset reveals
that VIBT achieves 98.1% precision and 98.8% accuracy, significantly outperforming existing
standard models. The results suggest that VIBT not only improves fault detection capabilities
but also optimizes maintenance strategies in industrial applications, paving the way for future
research on semi-supervised learning based on transformers and the integration of intermodal
data.

Keywords: Anomaly detection, Faults, Prediction, Precision, Transformers, Vibration.

1. Introduction

The development of diagnostic and anomaly detection technologies, combined with artificial
intelligence, has promoted the adoption of data-driven methodologies for predicting failures in rotating
machinery [1]. Vibration analysis, although effective, requires better integration of Al [2], [3]. Failures
result in high costs [4], [5]. Deep learning (DL) technologies show promising performance but depend
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on large amounts of data and present variability challenges [6]. Solutions, such as convolutional neural
networks, are emerging, but feature extraction issues remain [7], [8]Signal processing techniques, such
as wavelet transform and EMD, have limitations [9]. DL models, such as CNNs and LSTMs, struggle
with long sequences [10].

We propose VIBT, a transformer-based method for analyzing non-stationary vibration data,
incorporating a convolutional filtering block (CFB) for denoising and a wavelet attention mechanism
(WTA). This model achieves 98.1% and 98.8% accuracy [11]. We use the Mafaulda dataset to enhance
the robustness of the model [12], [13]. The article also addresses the challenges of DL models [14], [15]
and sound analysis to reveal anomalies [16], [17].

We evaluate VIBT with precision, accuracy, and recall. The article presents similar research (section
2), the method (section 3), the results (section 4), and the conclusions (section 5), with references
(section 6).

2. Related Work

Spot inspections and measurements, although essential for detecting faults in rotating machinery, are
time-consuming and do not provide continuous coverage [18]. Traditional and image recognition
methods, although effective, remain costly and sensitive to environmental factors. Distributed acoustic
sensors (DAS) offer a viable alternative with signal processing techniques such as wavelet transform
and empirical mode decomposition (EMD), but they often suffer from limitations [10].

Deep learning models, such as LLM4TS and ParInfoGPT, have improved anomaly detection in DAS
time series [15], [17]. However, CNNSs struggle with long sequences, and RNNs can lack long-term
context. Hybrid techniques combining wavelets and LSTMs have shown advantages [19].

Recent research has applied LLMs to time series analysis, such as the VVoice2Series model by Yang et
al. [20] and the unified framework by Zhou et al. [21]. Chang et al. [17] introduced LLMA4TS, while
Hegselmann et al. [22] proposed an LLM for tabular data.

Classic transformers may not capture non-stationary fluctuations or suppress noise, but they offer
powerful modeling. Our solution, VIBT, fills this gap by integrating wavelet attention modules and
filter bank convolution into a Transformer encoder for real-time identification of deformation hazards.

3. Methods

The methods used to create the model are described here. To facilitate understanding of the relationships
between the steps in the methodology, we have included a diagram of the steps in Figure 1 to illustrate
this. Then, as shown in Figure 2 - 4 we use transformers to identify the type of fault and predict the state
of the machine.

3.1 Data description

The vibration data in our study comes from the public Mafaulda dataset used in [23]. This dataset
comprises 1,951 multivariate time series representing six machine conditions: normal operation,
horizontal misalignment, vertical misalignment, imbalance, overhang, and bearing failure. The data
were acquired with three unbalanced loads: 6(g), 20(g), and 35(g).

The dataset exhibits an imbalance in the distribution of samples; for example, the “Bearing” class has
558 samples, while horizontal misalignment has 197. This imbalance was taken into account when
interpreting overall performance, hence the use of accuracy and complementary metrics for a more
robust evaluation. Each file must contain complete loads without being too large.

Table 1: Defects in the data sets used

Faults Measurements
Horizontal misalignment 197
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Vertical misalignment 301
Unbalance 333
Overhangs 513
Bearings 558

For the training and evaluation of our model, the total dataset was split into a training set and a test set,
with a proportion of 70% for training and 30% for testing, respectively. This split is illustrated in Table
2.

Table 2: Breakdown of the data set (Training/Testing)

Type of set Percentage Number of samples
Training 70 % 1366

Test 30 % 585

Total 100 % 1951

Pre-processing

]

Feature Extraction

|

Model Training

l

Evaluation

Figure. 1. flowchart of the methodology steps.

3.1.1 Pre-processing and Normalization

Preprocessing was performed using Python's NumPy to load CSV datasets and visualize vibration
signals in order to identify anomalies and ensure the correct association of sound classes and fault labels.
We removed extreme values that could skew the analysis and applied a band-stop filter to reduce noise.
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Normalization was then performed by scaling the data within a defined range, using min-max
normalization based on the minimum and maximum values of each feature, as shown in Equation 1.

¥ = _ X=Min()
™ Max(X)-Min(X)

M)

- X : normalize. Is the vector of raw data;

- Xn: is a vector in the form of an array; Represents the vector of normalised data.
- Min(X): it is the lowest value of the vector X;

- Max(X): it is the highest value of the vector X;

3.1.2 Signal segmentation

Vibration signals can have a fixed or variable length, and sliding windows overlap to capture transitions
between states. Segmentation is defined by equations (2) and (3), with a window length and a sliding
step determining the distance between windows.For each segment, the start of the window can be
calculated as follows:

ti =1i.S (2)
Fori=0,1,2,...,N

Where N is the total number of segments, determined by the relationship:

N=[%]+1 @)

t; : Represents the start of the i-th segmentation window;

i : Is the index of the window, varying from 0 to N;

S : This is the sliding step between the start of two consecutive windows;

N : Represents the total number of segments;

T : Designates the total duration of the signal,

L : Designates the length of the window (duration of each segment);

Windows are formed by segmenting the signal x(t) and then multiplying it by a window w(t), which
can be chosen from several types of windows (for example, Hamming, Hanning, etc.). The windowing
formula becomes. as illustrated by equation 4:

yi (O =x().w(t—t;) (4)
Fort € [ti'ti + L]

y; (t) : Represents the windowed signal at time t for the i-th segment;

x(t) : Is the original signal at time t;

w (t — t;) : Represents the function of the applied window, offset by ¢; ;

t € [t; t; + L] : Indicates that time t is within the interval of the i-th segment;
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3.2 Feature extraction

This phase prepares the data for classification in two steps: the first converts the temporal data into
frequency and time-frequency domains via FFT, and the second uses DFT [24] to reduce dimensionality
and identify signal features, with Equation (5) for processing and Equation (6) for reconstruction..

X [K] = XNzd x[n]e TN ™ (5)

% [K] = LyN-1x[k]e TRkm 6
N k:0 ( )

X [K] : is the DFT coefficient at index k;
x[n] : Is the input signal with index n;
N : Is the total number of signal samples;
- j :Isthe imaginary unit;
- k Varies from o to N-1;
- m : Represents the time or frequency index in the summation;
We perform three types of analyses to generate functionalities in the time-domain, frequency-domain,
and time-frequency domain.

3.2.1 Feature selection and Partitioning of the dataset

We perform a correlation analysis to eliminate redundant features, using SelectKBest to select the most
relevant ones and PCA to reduce dimensionality. The dataset is divided into two sections: test and
training. The test samples evaluate the model, while the training samples train it, with a division of 70%
for training and 30% for testing [24].

3.3 Vibration detection transformer

We propose a transformative framework for feature extraction and risk assessment in non-stationary
vibration data from cable tunnels. VIBT comprises two modules: FBC for seasonality and WTA for
non-stationary patterns.

3.3.1. Filter bank convolution module

Equations (7), (8), and (9) show that the FBC module learns frequency-specific representations of
vibration signals using convolutional neural networks and finite impulse response filters. Figure 2
illustrates its structure.

Vibration Signal Filter Features

Filter 1
Feature 1
Filter 2

Feature 2
Filter 3

?

.TI )

Inh

Feature 3

| I

Feature 4
Filter

Figure. 2. Structure of FBC module.

186




OOV
|® 4<

The one-dimensional vibration signal X(t) e RT must be the vibration signal input. Composed of K
parallel learnable filters, the FBC module

h(t) e RN, In order to generate a filtered feature sequence, each filter convolves with the input:

Fr( = (x x h)® = XN3h (n).x(t—n), k=1,2,...... K

A stacked matrix of every K channel is the FBC module's output:

Xpge = [F1(0); Fy(0); ... ... ; Fx(©)] € REXT (8)

The filters are set up to evenly span the frequency band [O, g] in order to guarantee frequency-domain
complementarity. Backpropagation is used to optimize all filter parameters hj (n) during training.

A regularization term and a task-specific loss L, are included in the total loss function to encourage
balanced frequency coverage:

2
Lepc = Luask + A Zieq (JIHk(DI? df — <€) ©

in which A is a regularization coefficient, C is a constant, and H, (f) is the frequency response of the
kth filter.

3.3.2. Wavelet transform-based adaptive multi-scale attention

Our proposal, WTA, combines the discrete wavelet transform (DWT) with an attention mechanism for
dynamic fusion of multi-scale features obtained using equations (10), (11), (12), to effectively represent
the non-stationary and time-varying nature of vibration signals. The WTA structure is illustrated in

Figure 3.
Data Signal Transformer Feature Attention Fusion Output
[—’_—' Output — | Dy.1 = g
Transformer Encoder i
iﬁﬁﬁﬁﬁmiﬁ ‘

L L .

Linear Projection

éhbtbiﬁi

Input Spectrogram $—amn
MP tch Spit nnhad@u'-

Figure. 3. Structure of WTA module.
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Decomposition of the input signal X(t) lieds several detail coefficients across D; across ] levels and
one approximation coefficient A;:

DWT
X(t) — {A;,D;,Dj_y, ......, Dy } (10)

Where A; represents the coarsest approximation and Dj denotes the detail coefficients at level j.

Using grid-search ablation across {2,3, 4, 5, 6}, we identify the ideal number of levels J. The greatest
Score-F1 on the validation set is obtained with J = 3.

A learnable attention network is used to calculate the attention weight «; for each set of detail
coefficients D;:

e(wT o(wb; +b))

N WTetwr o) )
Through a weighted sum across scales, the final fused representation is produced:

Iy — v

X() = Y-, D5 (D) (12)

The nonlinear activation function (such as ReLU or tanh) is represented by a(.), and the learnable
parameters are W, w, and b.

In equation (11), we use an attention network to calculate the attention weights, denoted o.. These
weights are essential for weighting the contributions of detail coefficients in the feature fusion process.

- W represents the weights of the attention network, which are learned during training. These
weights determine the relative importance of each detail coefficient in the final representation
of the signal.

- b is the bias associated with the weights W, allowing for additional flexibility in model
adjustment.

- o denotes a nonlinear activation function, such as ReLU or tanh, which is applied to the outputs
of the vector product between W and the detail coefficients. The use of this activation function
introduces nonlinearity into the model, which is crucial for capturing complex relationships in
the data.

3.4. VIBT model architecture

For vibration anomaly detection and high-resolution feature learning, the VIBT framework combines
the FBC and WTA modules into a Transformer encoder. Figure 4 shows the VIBT's construction.
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Figure 4. VIBT Structure .

Three primary steps comprise the model:

To create frequency-sensitive multi-channel functions, the FBC module first processes the input signal

using equation (13).

T
Xinput € R".
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equation (14) provides improved temporal representations; the WTA module is applied to each feature
channel:

Xwra = WTA(Xgge) € REXT (14)

equation (15) gives a Transformer encoder, which incorporates positional encoding and residual
connections for depth modeling, receives the finite element sequence as input.

Xout = Transformer Encoder (Xya) (15)

In order to identify or classify vibration-related risks, equation (16) is used, and the output X,,,; is then
sent to a classification or regression head:

Xout = Transformer Encoder (Xywra), ¥ = Head(Xyyt)
(16)

3.5. Downstream learning module

We test three different downstream learners using the identical feature inputs in order to confirm that
the representations learnt by VIBT are capable of generalization. The first step is to implement a two-
layer MLP head: we flatten the encoder output X;;,p,,,; € RE*T into a vector of dimension D, apply a
fully-connected layer with weight W, e R%*P and bias b; € R%, pass the result through a RelLLU
activation o(-), and then project with W, e R4*P b, e R, and softmax to generate class probabilities
equation (17):

§ = Softmax(W, o (W, Flatten(X,yt) + by) + by) (17)

Lastly, we feed the flattened feature vector into a Stochastic Configuration Network (SCN) [25], where
the output weights are chosen using least squares and the hidden-layer weights and biases are created
at random using a supervisory process. This results in equation (18).

9 = SCN(Flatten(Xoyy)) (18)
SCN offers robust resistance against gradient vanishing along with quick convergence.
3.6. Performance evaluation

Performance measures include precision, accuracy, and recall. Four metrics showed improvements:
accuracy, recall, precision, and F1 score (equations 19-22). Recall evaluates the detection of positive
results [23, 24, 25], precision evaluates positive predictions, and F1 score provides an overall
assessment in cases of class imbalance. These metrics require true positives (TP), false positives (FP),
and false negatives (FN) per class.TP: The true-positive of a class is the total number of correct
predictions for this labeled class.

FP: The false-positive of a class is the total number of incorrect predictions that predicted this class.
FN: The false-negative of a class is the total number of false predictions for the data labeled in that
class.

Accuracy, as indicated in equations (19), measures the proportion of correct predictions out of the total
number of observations. It is an overall measure of model performance.
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TP+TN
TP+FP+TN+FN

Accuracy = (19)
- TP: true positives

- TN: true negatives

- FP: false positives

- FN: false negatives

Precision, calculated using equation (20), is the percentage of true positives. It evaluates the ratio of
correctly diagnosed defects. TP refers to detected class | samples, and FP refers to misclassified
samples.

TP
TP+FP

Pecision = (20)

Recall is the ratio of true positives (TP) to actual positive cases, indicating the model's success rate.
Combined with precision, recall measures identified defects, while precision evaluates predicted
positive cases, as in equation (21).

TP
TP+FN

Recall =

(21)

The F1 score evaluates the performance of a classification model by combining precision and recall,
which is essential for reducing false alarms and avoiding costly interruptions. It is calculated using
equation (22).

2 xPrecision xSensibilite

Score F1 = (22)

Precision +Sensibilite

AUC measures the model's ability to distinguish between positive and negative classes. A value of 1
indicates perfect separation, while a value of 0.5 indicates a random model.

4. Result and Discussion

This section evaluates the effectiveness of VIBT by analyzing performance on an Intel(R) Core i7-
3320M 3 GHz workstation and an INTEL(R) 11 GB graphics card. The optimal hyperparameters are
shown in Table 3.

4.1. Dataset construction
The vibration data comes from the Mafaulda dataset [23], with 1951 time series and loads of 6 (g), 20
(9), and 35 (g) [24]. It contains five faults and one normal state, with an accuracy of 98.8% and a
recall of 92.4%.

The set shows an imbalance between classes (Table 2). Figure 5 illustrates each defect, while
Figures 5 and 6 evaluate the reliability of the machine.
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Fig. 5. The following waveforms represent vibration signals: (a) normal (no fault); (b) misaligned; (c)
imbalanced; and (d) bearing faulty.
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—— (d) Bearings
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Figure 6: Signal representing all faults

After min-max normalization, the data stream was divided into 1,000 one-second segments with a 0.5-
second overlap. Two engineers selected 600 deformation segments based on criteria such as frequency
variations exceeding 5 Hz/s. Sub-sets were created for testing, validation, and training. The Mafaulda
dataset is confidential and used solely for model validation.

4.2. Evaluation metrics

The following assessment indicators were employed in order to thoroughly assess the model's
performance: F1 score, precision, and accuracy: the arithmetic mean of F1 scores across all classes,
which gauges class balance. Evaluation of the model's precision and recall in preventing false alarms
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and missed detections. Furthermore, we test robustness in varying signal-to-noise scenarios to measure
real-world adaptability.

4.3. Baseline models
We contrast the suggested VIBT model with a number of sample models to show its efficacy:
+LLMATS [17]: This work proposed a LLM-based method for time series prediction using a pre-
trained large speech model, which consisted of supervised fine-tuning and downstream fine-
tuning.
«»ParInfoGPT [15]: An LLM-based two-stage framework for reliability assessment of rotating
machine under partial information
“FPT [21]: This work utilized a pre-trained LLM for time series analysis, which froze the self-
attention and feedforward layers while fine-tuning the model to adapt to various tasks for time
series analysis.
«»FEDforme [26]: This work proposed a frequency enhanced decomposed Transformer, which
combined Transformer and Fourier Transform for extracting time series features
Every model was trained and assessed using the same data splits and training conditions. Table 3
provides a summary of the VIBT model design and training information.

Table 3: Training details and model configuration.

Parameter Value
Optimizer SGD
Number epochs 100

Encoder layer 2

Batch size 16

Rndom seed 42

Initiel leaning rate 1 x 1073

4.4 Experimental results

Table 5 provides an overview of each model’s classification performance on the test set (see to Figure
7). Figure 7 shows the ROC curves for the FEDforme, FPT, ParInfoGPT, LLMA4TS, and VIBT models,
with AUC values ranging from 0.8013 for FEDforme to 0.9765 for VIBT, indicating the best
performance of VIBT.

VIBT outperforms all models. Ablation experiments evaluated each module: without FBC,
without WTA, and the reference with only the Transformer backbone. In our 6-fold cross-validation,
we searched for the optimal number of wavelet decomposition levels in the WTA module. The results
are shown in Table 4.
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Figure. 7. ROC for models under comparison.

Table 4 shows the performance of the models in terms of accuracy, precision, recall, and F1 score.
Model 4 excels in accuracy (0.921) and precision (0.925), while model 3 has the best recall (0.891) and
F1 score (0.902). Model 5 has the lowest scores, indicating trade-offs. The table highlights the strengths
and weaknesses of each model.

Table 4: Performance cross-validation for various decomposition levels J

J Accuracy  Precision Recall Score FI
2 0,905 0,892 0,86 0,891
3 0,918 0,902 0,891 0,902
4 0,921 0,925 0,88 0,895
5 0,897 0,901 0,874 0,881
6 0,919 0,91 0,90 0,905

4.5 Discussion

Table 5 shows that VIBT has the best accuracy (0.988), precision (0.981), and recall (0.924). LLMATS
(0.965, 0.962, 0.906) and ParInfoGPT (0.964, 0.961, 0.904) perform well, with ParInfoGPT having the
best F1 score (0.914). FEDforme has lower results (0.662, 0.652, 0.653) and is less suitable. In
summary, VIBT is the optimal method, with LLMA4TS and ParIinfoGPT offering specific advantages.

Table 5: Results of five-fold cross-validation on the test sets.

Methode Accuracy Precision Recall Score FI

LLMA4TS 0,965 0,962 0,906 0,905

ParinfoGPT 0,964 0,961 0,904 0,914

FPT 0,950 0,954 0,952 0,949

FEDforme 0,662 0,652 0,653 0,644

VIBT 0,988 0,981 0,924 0,929
194
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The FBC module and WTA mechanism have been integrated to improve the performance of the VIBT
model. Models such as LLMA4TS and FPT do not handle non-stationarity, which limits their ability to
detect frequency components, whereas the FBC module excels in this area. WTA identifies high-
frequency transient disturbances, flagging anomalies that traditional models struggle to detect.

The implementation of VIBT could significantly reduce downtime in industry, with 98.8%
accuracy in anomaly detection. By preventing up to 70% of failures, savings could reach 10 to 21 hours
per machine per year, representing considerable financial gains. VIBT also integrates into predictive
maintenance strategies for continuous monitoring and optimization of interventions.

Minimizing false negatives is crucial for safety. To improve recall, strategies include adjusting
the decision threshold, using ensemble techniques such as bagging or boosting, and improving training
data. These approaches show promise for enhancing industrial safety.

4.6- Ablation Study

Table 6 shows that VIBT (Full) achieves the best results (accuracy = 0.989, precision = 0.983, recall =
0.936). The baseline is lower (0.872/0.862/0.848), while VIBT w/o FBC (0.901/0.873/0.890) and
VIBT w/o WTA (accuracy = 0.889) perform better than the baseline but remain below the full model.
VIBT (Full) is the most reliable method.

Table 6: Study of ablation (complete metrics)

Methodes Accuracy  Precision Recall Score FlI
VIBT baseline 0,872 0,862 0,848 0,859
VIBT w/o WTA 0,889 0,861 0,871 0,884
VIBT w/o FBC 0,901 0,873 0,890 0,887
VIBT (Full) 0,989 0,983 0,936 0,946

The VIBT model performs well in classification despite a low signal-to-noise ratio (Figure 8), with an
AUC of 0.9821. The J=4 method is the most balanced (precision of 0.921, recall of 0.88, FI of 0.895)
(Table 4). The final configuration uses four levels of wavelet decomposition to optimize feature capture
and reduce noise.

10+

0.8 4

o4
o

True Positive Rate

o
S
|

0.2 1
= VIBT baseline (AUC = 0.8350)

VIBT w/o WTAMA (AUC = 0.8941)
= VIBT w/o FBC (AUC = 0.9321)
= VIBT (Full) (AUC = 0.9821)
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Figure. 8. ROC across several ablation models.
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In conclusion, the VIBT model's exceptional ability to handle noise and non-stationary signal
characteristics directly contributes to its enhanced anomaly identification. The model may capture
small, transient high-frequency components that are indicative of structural deformations, which are
limited in traditional time-series models, by utilizing both the FBC and WTA modules.

4.7 Limitations

The VIBT model, although effective for detecting vibration faults, has limitations. The Mafaulda dataset
may not cover all failure scenarios, which affects its generalizability. Its complexity requires significant
computing resources, making it difficult to deploy on less powerful machines. The interpretability of
decisions also remains a challenge, highlighting the need for research to improve its robustness and
adaptability.

5. Conclusion

This study presents VIBT, a Transformer-based framework for anomaly detection in rotating
machinery, aimed at reducing losses in Industry 5.0. With 98.1% accuracy and 98.8% precision, VIBT
overcomes the challenges of non-stationary signals.

We plan to extend the method to other systems and explore transfer learning. However, limitations
remain: the Mafaulda dataset may not cover all failure scenarios, and the complexity of the model
requires significant resources. The interpretability of decisions remains a challenge.

In summary, our research opens up new perspectives for the diagnosis of rotating machines and
identifies avenues for future work.
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5.1. Future Work

In our future work, we will optimize the architecture of the VIBT model to reduce its complexity, using
compression techniques such as quantization and pruning. We will explore transfer learning to improve
its robustness and develop interpretability tools.

We will extend testing to other datasets and real-world data from sectors such as aerospace and energy
to assess its adaptability. Integrating this data will validate the model's performance in industrial settings
and optimize accuracy.

These efforts will strengthen user confidence in VIBT and open up new avenues of research for its
continuous improvement.
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- Al: Artificial Intelligence

Artificial intelligence, a field of computer science that simulates human intelligence.

- CNN: Convolutional Neural Network
Convolutional neural network, used primarily for image recognition and visual data analysis.

- DAS: Distributed Acoustic Sensing
Distributed acoustic sensing system, used to measure vibrations over long distances using
optical fibers.

- DFT: Discrete Fourier Transform
Discrete Fourier transform, used to analyze the frequencies of a signal.

- EMD: Empirical Mode Decomposition
Empirical mode decomposition, a method of analyzing nonlinear and non-stationary signals.

- FBC: Filter Bank Convolution
Filter bank convolution, a module used for denoising vibration signals.

- LLM: Large Language Model
Large language model, used for various natural language processing tasks.

- MLP: Multi-Layer Perceptron
Multi-layer perceptron, a type of artificial neural network composed of several layers.

- VIBT: Vibration Detection Transformer
Transformer for vibration detection, the method proposed in the article for analyzing vibration
data.

- WTA: Wavelet Transform Attention
Wavelet transform-based attention, an attention mechanism for dynamic fusion of multi-scale
features..

Data Availability : The datasets used and analyzed in the current study are available in references [23]
and [24]. Available at the link: https://wwwO02.smt.ufrj.br/~offshore/mfs/page 01.html
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