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Abstract. Quickly identifying anomalies in rotating machinery is crucial for safety and 

profitability in contemporary industry (Industry 5.0). Unidentified failures can cause costly 

malfunctions and production interruptions. This research proposes an innovative strategy based 

on Transformer for the analysis of multidimensional vibration events (VIBT), with a view to 

early and accurate detection of anomalies in rotating machinery. The goal is to minimize 

production interruptions in Industry 5.0. The study highlights the limitations of conventional 

vibration analysis approaches and traditional deep learning techniques, emphasizing the need 

for innovative solutions. VIBT incorporates transformers and a filter bank convolution (FBC) 

module for effective denoising, as well as an adaptive wavelet transformation (WTA) 

mechanism for dynamic feature fusion at various scales, thereby addressing the challenges 

posed by non-stationary and noisy signals. Extensive testing on the Mafaulda dataset reveals 

that VIBT achieves 98.1% precision and 98.8% accuracy, significantly outperforming existing 

standard models. The results suggest that VIBT not only improves fault detection capabilities 

but also optimizes maintenance strategies in industrial applications, paving the way for future 

research on semi-supervised learning based on transformers and the integration of intermodal 

data. 

Keywords: Anomaly detection, Faults, Prediction, Precision, Transformers, Vibration. 

 

1. Introduction 

The development of diagnostic and anomaly detection technologies, combined with artificial 

intelligence, has promoted the adoption of data-driven methodologies for predicting failures in rotating 

machinery [1]. Vibration analysis, although effective, requires better integration of AI [2], [3]. Failures 

result in high costs [4], [5]. Deep learning (DL) technologies show promising performance but depend
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 on large amounts of data and present variability challenges [6]. Solutions, such as convolutional neural 

networks, are emerging, but feature extraction issues remain [7], [8]Signal processing techniques, such 

as wavelet transform and EMD, have limitations [9]. DL models, such as CNNs and LSTMs, struggle 

with long sequences [10]. 

We propose VIBT, a transformer-based method for analyzing non-stationary vibration data, 

incorporating a convolutional filtering block (CFB) for denoising and a wavelet attention mechanism 

(WTA). This model achieves 98.1% and 98.8% accuracy [11]. We use the Mafaulda dataset to enhance 

the robustness of the model [12], [13]. The article also addresses the challenges of DL models [14], [15] 

and sound analysis to reveal anomalies [16], [17]. 

We evaluate VIBT with precision, accuracy, and recall. The article presents similar research (section 

2), the method (section 3), the results (section 4), and the conclusions (section 5), with references 

(section 6). 

2. Related Work 

 

Spot inspections and measurements, although essential for detecting faults in rotating machinery, are 

time-consuming and do not provide continuous coverage [18]. Traditional and image recognition 

methods, although effective, remain costly and sensitive to environmental factors. Distributed acoustic 

sensors (DAS) offer a viable alternative with signal processing techniques such as wavelet transform 

and empirical mode decomposition (EMD), but they often suffer from limitations [10]. 

Deep learning models, such as LLM4TS and ParInfoGPT, have improved anomaly detection in DAS 

time series [15], [17]. However, CNNs struggle with long sequences, and RNNs can lack long-term 

context. Hybrid techniques combining wavelets and LSTMs have shown advantages [19]. 

Recent research has applied LLMs to time series analysis, such as the Voice2Series model by Yang et 

al. [20] and the unified framework by Zhou et al. [21]. Chang et al. [17] introduced LLM4TS, while 

Hegselmann et al. [22] proposed an LLM for tabular data. 

Classic transformers may not capture non-stationary fluctuations or suppress noise, but they offer 

powerful modeling. Our solution, VIBT, fills this gap by integrating wavelet attention modules and 

filter bank convolution into a Transformer encoder for real-time identification of deformation hazards. 

 

3. Methods 

The methods used to create the model are described here. To facilitate understanding of the relationships 

between the steps in the methodology, we have included a diagram of the steps in Figure 1 to illustrate 

this. Then, as shown in Figure 2 - 4 we use transformers to identify the type of fault and predict the state 

of the machine. 

 

3.1 Data description 

The vibration data in our study comes from the public Mafaulda dataset used in [23]. This dataset 

comprises 1,951 multivariate time series representing six machine conditions: normal operation, 

horizontal misalignment, vertical misalignment, imbalance, overhang, and bearing failure. The data 

were acquired with three unbalanced loads: 6(g), 20(g), and 35(g). 

The dataset exhibits an imbalance in the distribution of samples; for example, the “Bearing” class has 

558 samples, while horizontal misalignment has 197. This imbalance was taken into account when 

interpreting overall performance, hence the use of accuracy and complementary metrics for a more 

robust evaluation. Each file must contain complete loads without being too large. 

 

Table 1: Defects in the data sets used 

Faults  Measurements 

Horizontal misalignment  197 
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Vertical misalignment  301 

Unbalance  333 

Overhangs  513 

Bearings  558 

 

For the training and evaluation of our model, the total dataset was split into a training set and a test set, 

with a proportion of 70% for training and 30% for testing, respectively. This split is illustrated in Table 

2. 

Table 2: Breakdown of the data set (Training/Testing) 

Type of set Percentage Number of samples 

Training 70 % 1366 

Test 30 % 585 

Total 100 % 1951 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure. 1. flowchart of the methodology steps. 

 

3.1.1 Pre-processing and Normalization 

Preprocessing was performed using Python's NumPy to load CSV datasets and visualize vibration 

signals in order to identify anomalies and ensure the correct association of sound classes and fault labels. 

We removed extreme values that could skew the analysis and applied a band-stop filter to reduce noise. 
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Normalization was then performed by scaling the data within a defined range, using min-max 

normalization based on the minimum and maximum values of each feature, as shown in Equation 1. 

Xn =
X−Min(X)

Max(X)−Min(X)
                            (1) 

 

- X : normalize. Is the vector of raw data; 

- Xn: is a vector in the form of an array; Represents the vector of normalised data. 

- Min(X): it is the lowest value of the vector X; 

- Max(X): it is the highest value of the vector X; 

 

3.1.2 Signal segmentation 

Vibration signals can have a fixed or variable length, and sliding windows overlap to capture transitions 

between states. Segmentation is defined by equations (2) and (3), with a window length and a sliding 

step determining the distance between windows.For each segment, the start of the window can be 

calculated as follows: 

 

ti = i . S                                  (2) 

For i=0, 1, 2, …, N   

 

Where N is the total number of segments, determined by the relationship: 

N = [
T−L

S
] + 1                            (3) 

- 𝑡𝑖 : Represents the start of the i-th segmentation window; 

- 𝑖 : Is the index of the window, varying from 0 to N; 

- 𝑆 : This is the sliding step between the start of two consecutive windows; 

- 𝑁 : Represents the total number of segments; 

- 𝑇 : Designates the total duration of the signal; 

- 𝐿 : Designates the length of the window (duration of each segment); 

Windows are formed by segmenting the signal x(t) and then multiplying it by a window w(t), which 

can be chosen from several types of windows (for example, Hamming, Hanning, etc.). The windowing 

formula becomes. as illustrated by equation 4: 

yi (t) = x(t) .w (t − ti)                    (4) 

For t ∈  [ti, ti + L] 

 

- 𝑦𝑖  (𝑡) : Represents the windowed signal at time t for the i-th segment; 

- 𝑥(𝑡) : Is the original signal at time t; 

- 𝑤 (𝑡 − 𝑡𝑖) : Represents the function of the applied window, offset by 𝑡𝑖 ; 
- 𝑡 ∈  [𝑡𝑖, 𝑡𝑖 + 𝐿] : Indicates that time t is within the interval of the i-th segment; 
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3.2 Feature extraction 

This phase prepares the data for classification in two steps: the first converts the temporal data into 

frequency and time-frequency domains via FFT, and the second uses DFT [24] to reduce dimensionality 

and identify signal features, with Equation (5) for processing and Equation (6) for reconstruction.. 

X [K] = ∑ x[n]e−j
2π

N
kmN−1

n=0                                               (5) 

x  [K] =
1

N
∑ X[k]e−j

2π

N
kmN−1

k=0                                           (6) 

- 𝑋  [𝐾] : is the DFT coefficient at index k; 

- 𝑥[𝑛]  : Is the input signal with index n; 

- 𝑁   : Is the total number of signal samples; 

- 𝑗   : Is the imaginary unit; 

- 𝑘   Varies from o to N-1; 

- 𝑚 : Represents the time or frequency index in the summation; 

We perform three types of analyses to generate functionalities in the time-domain, frequency-domain, 

and time-frequency domain. 

3.2.1 Feature selection and Partitioning of the dataset 

We perform a correlation analysis to eliminate redundant features, using SelectKBest to select the most 

relevant ones and PCA to reduce dimensionality. The dataset is divided into two sections: test and 

training. The test samples evaluate the model, while the training samples train it, with a division of 70% 

for training and 30% for testing [24]. 

3.3 Vibration detection transformer 

We propose a transformative framework for feature extraction and risk assessment in non-stationary 

vibration data from cable tunnels. VIBT comprises two modules: FBC for seasonality and WTA for 

non-stationary patterns. 

3.3.1. Filter bank convolution module 

Equations (7), (8), and (9) show that the FBC module learns frequency-specific representations of 

vibration signals using convolutional neural networks and finite impulse response filters. Figure 2 

illustrates its structure. 

 

 

 

 

 

 

 

Figure. 2. Structure of FBC module. 
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The one-dimensional vibration signal 𝑋(𝑡)  𝜖 ℝ𝑇 must be the vibration signal input. Composed of K 

parallel learnable filters, the FBC module 

ℎ𝑘(𝑡) 𝜖 ℝ
𝑁.  In order to generate a filtered feature sequence, each filter convolves with the input:  

 

        Fk(t) =  (x × hk)(t) =  ∑ hk
N−1
n=0 (n) . x(t − n),        k = 1, 2,……… , K      

(7) 

 

A stacked matrix of every 𝐾 channel is the FBC module's output: 

                                          XFBC = [F1(t); F2(t);…… ; FK(t)]  ∈  ℝ
K×T

                (8) 

 

The filters are set up to evenly span the frequency band [0,   
𝑓𝑠

2
] in order to guarantee frequency-domain 

complementarity. Backpropagation is used to optimize all filter parameters ℎ𝑘(𝑛) during training.  

A regularization term and a task-specific loss Լ𝑡𝑎𝑠𝑘 are included in the total loss function to encourage 

balanced frequency coverage:  

                                          ԼFBC = Լtask  +  λ ∑ (∫|Hk(f)|
2  df − 

1

K
C)
2

K
k=1                 (9) 

in which 𝜆 is a regularization coefficient, 𝐶 is a constant, and 𝐻𝑘(𝑓) is the frequency response of the 

𝑘th filter. 

3.3.2. Wavelet transform-based adaptive multi-scale attention 

Our proposal, WTA, combines the discrete wavelet transform (DWT) with an attention mechanism for 

dynamic fusion of multi-scale features obtained using equations (10), (11), (12), to effectively represent 

the non-stationary and time-varying nature of vibration signals. The WTA structure is illustrated in 

Figure 3. 
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Figure. 3. Structure of WTA module. 
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Decomposition of the input signal 𝑋(𝑡) lieds several detail coefficients across 𝐷𝑗 across 𝐽 levels and 

one approximation coefficient 𝐴𝑗: 

X(t)  
DWT
→    {Aj, Dj, Dj−1, …… , D1}                                      (10) 

 

Where 𝐴𝑗  represents the coarsest approximation and 𝐷𝑗 denotes the detail coefficients at level 𝑗. 

Using grid-search ablation across {2,3, 4, 5, 6}, we identify the ideal number of levels 𝐽. The greatest 

Score-F1 on the validation set is obtained with 𝐽 = 3.  

A learnable attention network is used to calculate the attention weight 𝛼𝑗 for each set of detail 

coefficients 𝐷𝑗:  

αj = 
e
(WT σ(WDJ +b))

∑ e
(WT σ(WDl +b))J

i=1

                                                   (11) 

 

Through a weighted sum across scales, the final fused representation is produced:  

 

X̂(t) =  ∑ αjDj
J
j=1 (t)                                                         (12) 

 

The nonlinear activation function (such as ReLU or tanh) is represented by 𝛼(. ), and the learnable 

parameters are W, w, and b. 

In equation (11), we use an attention network to calculate the attention weights, denoted αₑ. These 

weights are essential for weighting the contributions of detail coefficients in the feature fusion process. 

 

- W represents the weights of the attention network, which are learned during training. These 

weights determine the relative importance of each detail coefficient in the final representation 

of the signal. 

- b is the bias associated with the weights W, allowing for additional flexibility in model 

adjustment. 

- σ denotes a nonlinear activation function, such as ReLU or tanh, which is applied to the outputs 

of the vector product between W and the detail coefficients. The use of this activation function 

introduces nonlinearity into the model, which is crucial for capturing complex relationships in 

the data. 

3.4. VIBT model architecture 

For vibration anomaly detection and high-resolution feature learning, the VIBT framework combines 

the FBC and WTA modules into a Transformer encoder. Figure 4 shows the VIBT's construction. 
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Figure 4. VIBT Structure . 

Three primary steps comprise the model: 

To create frequency-sensitive multi-channel functions, the FBC module first processes the input signal 

using equation (13). 

𝑿𝒊𝒏𝒑𝒖𝒕 ∈  ℝ
𝑻.  

                                                                 XFBC = FBC(Xinput)  ∈  ℝ
K×T                             (13) 
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equation (14) provides improved temporal representations; the WTA module is applied to each feature 

channel: 

                                                  XWTA = WTA(XFBC)  ∈  ℝ
K×T                                   (14) 

 

equation (15) gives a Transformer encoder, which incorporates positional encoding and residual 

connections for depth modeling, receives the finite element sequence as input. 

                                                   Xout = Transformer Encoder (XWTA)                         (15) 

 

In order to identify or classify vibration-related risks, equation (16) is used, and the output 𝑋𝑜𝑢𝑡 is then 

sent to a classification or regression head: 

               Xout = Transformer Encoder (XWTA),         ŷ = Head(Xout)                  
(16) 

3.5. Downstream learning module 

We test three different downstream learners using the identical feature inputs in order to confirm that 

the representations learnt by VIBT are capable of generalization. The first step is to implement a two-

layer MLP head: we flatten the encoder output 𝑋𝑖𝑛𝑝𝑢𝑡 ∈  ℝ
𝐾×𝑇 into a vector of dimension 𝐷, apply a 

fully-connected layer with weight  𝑊1 𝜖 ℝ
𝑑ℎ×𝐷 and bias 𝑏1 𝜖 ℝ

𝑑ℎ, pass the result through a ReLU 

activation 𝜎(⋅), and then project with 𝑊1 𝜖 ℝ
𝑑ℎ×𝐷, 𝑏1 𝜖 ℝ

𝐶, and softmax to generate class probabilities 

equation (17): 

ŷ = Softmax(W2 σ (W1Flatten(Xout)  +  b1)  + b2)                  (17) 

Lastly, we feed the flattened feature vector into a Stochastic Configuration Network (SCN) [25], where 

the output weights are chosen using least squares and the hidden-layer weights and biases are created 

at random using a supervisory process. This results in equation (18). 

̂ŷ = SCN(Flatten(Xout))                                                  (18) 

SCN offers robust resistance against gradient vanishing along with quick convergence. 

3.6. Performance evaluation 

Performance measures include precision, accuracy, and recall. Four metrics showed improvements: 

accuracy, recall, precision, and F1 score (equations 19-22). Recall evaluates the detection of positive 

results [23, 24, 25], precision evaluates positive predictions, and F1 score provides an overall 

assessment in cases of class imbalance. These metrics require true positives (TP), false positives (FP), 

and false negatives (FN) per class.TP: The true-positive of a class is the total number of correct 

predictions for this labeled class. 

FP: The false-positive of a class is the total number of incorrect predictions that predicted this class. 

FN: The false-negative of a class is the total number of false predictions for the data labeled in that 

class. 

Accuracy, as indicated in equations (19), measures the proportion of correct predictions out of the total 

number of observations. It is an overall measure of model performance. 
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Accuracy =  
TP+TN

TP+FP+TN+FN
                                       (19) 

- TP: true positives 

- TN: true negatives 

- FP: false positives 

- FN: false negatives 

Precision, calculated using equation (20), is the percentage of true positives. It evaluates the ratio of 

correctly diagnosed defects. TP refers to detected class I samples, and FP refers to misclassified 

samples. 

Pecision =  
TP

TP+FP
                                        (20)  

 

Recall is the ratio of true positives (TP) to actual positive cases, indicating the model's success rate. 

Combined with precision, recall measures identified defects, while precision evaluates predicted 

positive cases, as in equation (21). 

Recall =  
TP

TP+FN
                                                                   (21) 

 

The F1 score evaluates the performance of a classification model by combining precision and recall, 

which is essential for reducing false alarms and avoiding costly interruptions. It is calculated using 

equation (22). 

Score F1 =  
2 ×Precision ×Sensibilite

Precision +Sensibilite
                                           (22) 

 

AUC measures the model's ability to distinguish between positive and negative classes. A value of 1 

indicates perfect separation, while a value of 0.5 indicates a random model. 

 

4. Result and Discussion 

This section evaluates the effectiveness of VIBT by analyzing performance on an Intel(R) Core i7-

3320M 3 GHz workstation and an INTEL(R) 11 GB graphics card. The optimal hyperparameters are 

shown in Table 3. 

4.1. Dataset construction  

The vibration data comes from the Mafaulda dataset [23], with 1951 time series and loads of 6 (g), 20 

(g), and 35 (g) [24]. It contains five faults and one normal state, with an accuracy of 98.8% and a 

recall of 92.4%. 

The set shows an imbalance between classes (Table 2). Figure 5 illustrates each defect, while 

Figures 5 and 6 evaluate the reliability of the machine. 
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Fig. 5. The following waveforms represent vibration signals: (a) normal (no fault); (b) misaligned; (c) 

imbalanced; and (d) bearing faulty. 

 

 

Figure 6: Signal representing all faults 

After min-max normalization, the data stream was divided into 1,000 one-second segments with a 0.5-

second overlap. Two engineers selected 600 deformation segments based on criteria such as frequency 

variations exceeding 5 Hz/s. Sub-sets were created for testing, validation, and training. The Mafaulda 

dataset is confidential and used solely for model validation. 

4.2. Evaluation metrics 

The following assessment indicators were employed in order to thoroughly assess the model's 

performance: F1 score, precision, and accuracy: the arithmetic mean of F1 scores across all classes, 

which gauges class balance. Evaluation of the model's precision and recall in preventing false alarms 
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and missed detections. Furthermore, we test robustness in varying signal-to-noise scenarios to measure 

real-world adaptability. 

 

4.3. Baseline models 

We contrast the suggested VIBT model with a number of sample models to show its efficacy: 

❖ LLM4TS [17]: This work proposed a LLM-based method for time series prediction using a pre-

trained large speech model, which consisted of supervised fine-tuning and downstream fine-

tuning. 

❖ ParInfoGPT [15]: An LLM-based two-stage framework for reliability assessment of rotating 

machine under partial information 

❖ FPT [21]: This work utilized a pre-trained LLM for time series analysis, which froze the self-

attention and feedforward layers while fine-tuning the model to adapt to various tasks for time 

series analysis. 

❖ FEDforme [26]: This work proposed a frequency enhanced decomposed Transformer, which 

combined Transformer and Fourier Transform for extracting time series features 

Every model was trained and assessed using the same data splits and training conditions. Table 3 

provides a summary of the VIBT model design and training information. 

Table 3: Training details and model configuration. 

Parameter Value 

Optimizer SGD 

Number epochs 100 

Encoder layer 2 

Batch size 16 

Rndom seed 42 

Initiel leaning rate 1 × 10−3 

 

4.4 Experimental results 

Table 5 provides an overview of each model’s classification performance on the test set (see to Figure 

7). Figure 7 shows the ROC curves for the FEDforme, FPT, ParInfoGPT, LLM4TS, and VIBT models, 

with AUC values ranging from 0.8013 for FEDforme to 0.9765 for VIBT, indicating the best 

performance of VIBT. 

 VIBT outperforms all models. Ablation experiments evaluated each module: without FBC, 

without WTA, and the reference with only the Transformer backbone. In our 6-fold cross-validation, 

we searched for the optimal number of wavelet decomposition levels in the WTA module. The results 

are shown in Table 4. 
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Figure. 7. ROC for models under comparison. 

Table 4 shows the performance of the models in terms of accuracy, precision, recall, and F1 score. 

Model 4 excels in accuracy (0.921) and precision (0.925), while model 3 has the best recall (0.891) and 

F1 score (0.902). Model 5 has the lowest scores, indicating trade-offs. The table highlights the strengths 

and weaknesses of each model. 

 

Table 4: Performance cross-validation for various decomposition levels 𝐽 

J Accuracy Precision Recall Score FI 

2 0,905 0,892 0,86 0,891 

3 0,918 0,902 0,891 0,902 

4 0,921 0,925 0,88 0,895 

5 0,897 0,901 0,874 0,881 

6 0,919 0,91 0,90 0,905 

 

4.5 Discussion 

Table 5 shows that VIBT has the best accuracy (0.988), precision (0.981), and recall (0.924). LLM4TS 

(0.965, 0.962, 0.906) and ParInfoGPT (0.964, 0.961, 0.904) perform well, with ParInfoGPT having the 

best F1 score (0.914). FEDforme has lower results (0.662, 0.652, 0.653) and is less suitable. In 

summary, VIBT is the optimal method, with LLM4TS and ParInfoGPT offering specific advantages. 

 

Table 5: Results of five-fold cross-validation on the test sets. 

Methode Accuracy Precision Recall Score FI 

LLM4TS 0,965 0,962 0,906 0,905 

ParInfoGPT 0,964 0,961 0,904 0,914 

FPT 0,950 0,954 0,952 0,949 

FEDforme 0,662 0,652 0,653 0,644 

VIBT 0,988 0,981 0,924 0,929 
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The FBC module and WTA mechanism have been integrated to improve the performance of the VIBT 

model. Models such as LLM4TS and FPT do not handle non-stationarity, which limits their ability to 

detect frequency components, whereas the FBC module excels in this area. WTA identifies high-

frequency transient disturbances, flagging anomalies that traditional models struggle to detect. 

 The implementation of VIBT could significantly reduce downtime in industry, with 98.8% 

accuracy in anomaly detection. By preventing up to 70% of failures, savings could reach 10 to 21 hours 

per machine per year, representing considerable financial gains. VIBT also integrates into predictive 

maintenance strategies for continuous monitoring and optimization of interventions. 

 Minimizing false negatives is crucial for safety. To improve recall, strategies include adjusting 

the decision threshold, using ensemble techniques such as bagging or boosting, and improving training 

data. These approaches show promise for enhancing industrial safety. 

 

4.6- Ablation Study 

Table 6 shows that VIBT (Full) achieves the best results (accuracy = 0.989, precision = 0.983, recall = 

0.936). The baseline is lower (0.872/0.862/0.848), while VIBT w/o FBC (0.901/0.873/0.890) and 

VIBT w/o WTA (accuracy = 0.889) perform better than the baseline but remain below the full model. 

VIBT (Full) is the most reliable method. 

Table 6: Study of ablation (complete metrics) 

Methodes Accuracy Precision Recall Score FI 

VIBT baseline 0,872 0,862 0,848 0,859 

VIBT w/o WTA 0,889 0,861 0,871 0,884 

VIBT w/o FBC 0,901 0,873 0,890 0,887 

VIBT (Full) 0,989 0,983 0,936 0,946 

 

The VIBT model performs well in classification despite a low signal-to-noise ratio (Figure 8), with an 

AUC of 0.9821. The J=4 method is the most balanced (precision of 0.921, recall of 0.88, FI of 0.895) 

(Table 4). The final configuration uses four levels of wavelet decomposition to optimize feature capture 

and reduce noise. 

 

Figure. 8. ROC across several ablation models. 
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In conclusion, the VIBT model's exceptional ability to handle noise and non-stationary signal 

characteristics directly contributes to its enhanced anomaly identification. The model may capture 

small, transient high-frequency components that are indicative of structural deformations, which are 

limited in traditional time-series models, by utilizing both the FBC and WTA modules. 

 

4.7 Limitations 

The VIBT model, although effective for detecting vibration faults, has limitations. The Mafaulda dataset 

may not cover all failure scenarios, which affects its generalizability. Its complexity requires significant 

computing resources, making it difficult to deploy on less powerful machines. The interpretability of 

decisions also remains a challenge, highlighting the need for research to improve its robustness and 

adaptability. 

5. Conclusion 

This study presents VIBT, a Transformer-based framework for anomaly detection in rotating 

machinery, aimed at reducing losses in Industry 5.0. With 98.1% accuracy and 98.8% precision, VIBT 

overcomes the challenges of non-stationary signals. 

We plan to extend the method to other systems and explore transfer learning. However, limitations 

remain: the Mafaulda dataset may not cover all failure scenarios, and the complexity of the model 

requires significant resources. The interpretability of decisions remains a challenge. 

In summary, our research opens up new perspectives for the diagnosis of rotating machines and 

identifies avenues for future work. 
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5.1. Future Work 

In our future work, we will optimize the architecture of the VIBT model to reduce its complexity, using 

compression techniques such as quantization and pruning. We will explore transfer learning to improve 

its robustness and develop interpretability tools. 

We will extend testing to other datasets and real-world data from sectors such as aerospace and energy 

to assess its adaptability. Integrating this data will validate the model's performance in industrial settings 

and optimize accuracy. 

These efforts will strengthen user confidence in VIBT and open up new avenues of research for its 

continuous improvement. 
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5.2    a Glossary of Acronyms 

- AI: Artificial Intelligence 

Artificial intelligence, a field of computer science that simulates human intelligence. 

- CNN: Convolutional Neural Network 

Convolutional neural network, used primarily for image recognition and visual data analysis. 

- DAS: Distributed Acoustic Sensing 

Distributed acoustic sensing system, used to measure vibrations over long distances using 

optical fibers. 

- DFT: Discrete Fourier Transform 

Discrete Fourier transform, used to analyze the frequencies of a signal. 

- EMD: Empirical Mode Decomposition 

Empirical mode decomposition, a method of analyzing nonlinear and non-stationary signals. 

- FBC: Filter Bank Convolution 

Filter bank convolution, a module used for denoising vibration signals. 

- LLM: Large Language Model 

Large language model, used for various natural language processing tasks. 

- MLP: Multi-Layer Perceptron 

Multi-layer perceptron, a type of artificial neural network composed of several layers. 

- VIBT: Vibration Detection Transformer 

Transformer for vibration detection, the method proposed in the article for analyzing vibration 

data. 

- WTA: Wavelet Transform Attention 

Wavelet transform-based attention, an attention mechanism for dynamic fusion of multi-scale 

features.. 

Data Availability : The datasets used and analyzed in the current study are available in references [23] 

and [24]. Available at the link: https://www02.smt.ufrj.br/~offshore/mfs/page_01.html  
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