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Abstract. BPS Statistics Indonesia plays a strategic role in compiling balance sheet statistics as 

the foundation for national policy analysis. This role requires a deep understanding of the 

concepts, definitions, and compilation standards outlined in the System of National Accounts 

(SNA) manual. However, in practice, comprehending such complex technical documents is not 

always straightforward. To address this challenge, this study proposes the development of an 

intelligent conversational agent in the form of a chatbot that implements the Self-Multimodal 

RAG approach. This approach integrates self-reflection mechanisms to generate more accurate 

and relevant responses. The evaluation was conducted using the LLM-as-a-Judge framework 

across four metrics: answer correctness, answer relevancy, context relevancy, and context 

faithfulness. Experimental results demonstrate that the Self-Reflective RAG achieved a score of 

80% on the answer correctness metric, with competitive performance in terms of relevancy and 

faithfulness. From the chatbot implementation perspective, black-box testing confirmed that all 

functionalities operated as expected, while system usability testing using the CSUQ instrument 

yielded a score of 74.704%, indicating that the chatbot is well-accepted by users. 

Keyword: Chatbot, Large Language Model, Self-Reflective RAG, System of National Account. 

1. Introduction 

BPS Statistics Indonesia is a government institution that plays a strategic role in providing high-quality 

statistical data to support national development planning. One of BPS Statistics Indonesia’s core 

responsibilities is compiling balance sheet statistics, which serve as the foundation for various policy 

analyses. In practice, this task requires a thorough understanding of the concepts, definitions, and 

compilation standards stipulated in the System of National Accounts (SNA) manual. However, 

comprehending such highly technical documents is not always straightforward. This challenge arises 

from the use of highly specialized terminology, dense document structures, and complex concepts that 

demand advanced analytical reasoning. Consequently, employees may encounter difficulties in 

interpreting these concepts and applying them consistently in the compilation of balance sheet statistics. 

To address these challenges, one potential approach is the utilization of Artificial Intelligence (AI) 

technologies, particularly Large Language Models (LLM). LLM-based technologies have demonstrated 

remarkable capabilities in comprehending documents, generating contextual text with high accuracy, 

mailto:farhan082002@gmail.com


  

 

 

250 
 

M Farhan et al 

and enabling conversational or question–answering mechanisms [1]. Furthermore, LLMs have been 

adopted by various statistical organizations worldwide to enhance business process efficiency [2]. For 

example, the Australian Bureau of Statistics (ABS) employs LLMs to accelerate the updating of task 

lists within the Australian and New Zealand Standard Classification of Occupations (ANZSCO). 

Similarly, the Central Statistics Office (CSO) of Ireland leverages LLMs to translate code from SAS to 

R, supporting the organization’s transition to a more modern and efficient programming ecosystem. 

The International Monetary Fund (IMF) has also developed StatGPT, a generative AI–based prototype 

that enables users to access statistical data through a natural language interface. Unlike these statistical 

organizations that have already integrated LLM technologies into their business processes, BPS 

Statistics Indonesia has not yet implemented them on a large scale. In this regard, this study proposes 

the development of an intelligent conversational agent, or chatbot, powered by LLMs, which would 

enable employees to learn about national accounts by interactively posing questions related to concepts, 

definitions, and compilation standards. 

Chatbot technology has advanced significantly and demonstrated rapid progress across various 

domains, including education, healthcare, and public services. In the specific context of education and 

teaching, chatbots have proven effective in increasing availability and facilitating access to learning 

services [3]. Beyond that, they also enrich students’ learning experiences by providing motivational 

support, enhancing accessibility, and offering direct online assistance [4]. The use of chatbots has also 

begun to be implemented in the government sector as an effort to improve the effectiveness of 

communication between governments and citizens. For instance, [5] developed a chatbot designed to 

bridge two-way interactions in the context of public services. The approach integrated natural language 

processing, machine learning, and data mining technologies to create richer and more expressive 

communication channels, drawing on regulatory documents, government operational data, and social 

media as data sources. In the field of training, chatbots are increasingly being utilized as interactive 

tools to enhance the effectiveness of learning processes. For example, [6] proposed an innovative 

solution in the form of an LLM-based chatbot functioning as a startup training simulator. This system 

is capable of addressing iterative challenges in startup development through a conversational interface 

powered by LLMs such as GPT-3. 

The primary approach employed in the implementation of the chatbot in this study is Retrieval-

Augmented Generation (RAG), which combines the natural language understanding capabilities of 

LLMs with an additional mechanism for retrieving relevant information from external documents, such 

as the SNA manual. The use of RAG has been shown to effectively reduce factual errors or 

hallucinations that may arise from LLMs when performing tasks requiring specialized knowledge [7], 

[8]. Consequently, RAG has become the predominant approach for generating contextual answers 

grounded in domain-specific knowledge to mitigate factual inaccuracies or hallucinations [9]. For 

example, [10] developed a RAG-based medical chatbot to help the public access reliable health 

information, particularly on infectious diseases, by leveraging medical documents in PDF format from 

trusted sources such as Elsevier and The New York Times. Meanwhile, [11] explored the application 

of RAG in the context of financial report analysis with the aim of assisting individual investors in 

reviewing and interpreting quarterly or semiannual bank reports to support more informed investment 

decisions. 

Although RAG can enhance response generation, in practice it may still provide irrelevant contextual 

information to the LLM, which can lead to inaccurate and low-quality responses [12]. This issue arises 

because the retrieval process by default does not consider whether the retrieved information truly 

contributes to generating the correct answer [13]. To address this problem, several Advanced RAG 

frameworks have been developed. Among them are Self-Improve [14] and Self-Refine [15], which 

employ feedback loop mechanisms to autonomously correct errors in generated responses. Other 
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approaches such as Self-Correction [16] and Self-Reasoning [17] integrate reasoning processes to 

improve the effectiveness of information retrieval. In addition, Self-Reflective [18] introduces 

reflection tokens as explicit signals that help the model evaluate the quality of retrieved information 

based on relevance, as well as assess the utility and factual support of the generated responses. With 

this mechanism, Self-Reflective RAG has been proven to outperform RAG-based ChatGPT and 

Llama2-Chat across various tasks, including open-domain question answering, reasoning, and fact 

verification, particularly in terms of accuracy. This approach was subsequently adopted in this study as 

the foundational framework to improve the quality of generated responses. 

Building upon this foundation, this study aims to implement Self-RAG as the primary approach in 

an LLM-based chatbot for generating final answers to employees’ questions regarding national 

accounts. Through its reflective mechanism, the chatbot is expected to provide more accurate and 

relevant information while simultaneously offering BPS Statistics Indonesia employees easy, flexible, 

and adaptive access to learning in understanding national accounts concepts and methodologies. 

2. Research Method 

2.1. Dataset 

The primary data sources used as the knowledge base in this study consist of the SNA 2008 manual and 

six national accounts training modules developed by the Training and Education Center (Pusdiklat) of 

BPS Statistics Indonesia in 2024. To support the evaluation of the RAG approach, a test dataset 

comprising 105 question–answer pairs was constructed, all of which directly reference the content of 

the knowledge base. These questions were designed to reflect various types of information relevant to 

the context of national accounts, covering conceptual, quantitative, analytical, and methodological 

aspects. The information regarding the token statistics of the test dataset is presented in table 1. 

Table 1. Token statistics of the test dataset. 

Statistics Question tokens Answer tokens 

Average 26.67 64.66 

Minimum 5.00 7.00 

Maximum 116.00 275.00 

2.2. Document Ingestion and Indexing  

To process data from the knowledge base in PDF format, a parsing stage is required as the initial step. 

In this study, parsing was carried out using the gptpdf package, which leverages the PyMuPDF library 

to extract text elements from documents with the assistance of large visual models such as GPT-4o, and 

subsequently converts the extracted text areas into markdown format. This was followed by a chunking 

process, in which lengthy extracted texts were divided into smaller segments to enable efficient 

processing by the LLM. The resulting text chunks were then embedded and stored in a vector database 

after undergoing the embedding process using text-embedding-3-small. 

In this study, ChromaDB was selected as the vector database due to its open-source nature and 

seamless integration with the LangChain framework, which serves as the primary foundation for system 

development. The text-embedding-3-small model was chosen because it has been optimized to work 

synergistically with the main LLM employed in this research, namely GPT-4o-mini, thereby ensuring 

that retrieved contexts used during inference are more relevant and semantically meaningful. 

2.3. Self-Reflective RAG 
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The components and workflow of the Self-Reflective RAG approach are illustrated in figure 1. In 

general, the workflow consists of four main stages: context retrieval, relevance verification, answer 

generation, and answer verification. All of these stages were implemented using LangGraph, with each 

stage represented as a node corresponding to an LLM object. 

 

(a) 

 

(b) 

Figure 1. Components and workflow of Self-Reflective RAG, showing: (a) the Self-Reflective RAG 

components, and (b) the detailed workflow inside the Self-Reflective Layer. 

The explanation of each process in the Self-Reflective RAG workflow is outlined as follows. 

2.3.1. Document Retrieval. The document retrieval process employed cosine similarity as the metric for 

measuring semantic closeness between documents. The cosine similarity value between two text 

representation vectors, 𝑢⃗  and 𝑣 , ranges from -1 to 1. A value closer to 1 indicates a high degree of 

semantic similarity between the two texts. Conversely, a value of 0 denotes no semantic similarity, 

while a value of -1 indicates that the two texts are semantically opposite in meaning [19]. The formula 

for cosine similarity is as follows. 

𝑐𝑜𝑠 𝑐𝑜𝑠 (𝑢⃗ , 𝑣⃗ )  =
𝑢⃗ . 𝑣⃗ 

‖𝑢⃗ ‖ ‖𝑣⃗ ‖
=

∑𝑛𝑖=1 𝑢𝑖. 𝑣𝑖

√∑𝑛𝑖=1 𝑢𝑖
2 √∑𝑛𝑖=1 𝑣𝑖

2
 

(1) 

 In this process, for each query 𝑞, the contexts 𝐶 within the corpus are ranked in descending order 

based on their cosine similarity scores with respect to the query. Subsequently, only the top four 

contexts with the highest cosine similarity values are selected for further processing in the next stage. 

2.3.2. Relevance Verification. To monitor the context retrieval process, a dynamic state object was used 

as the medium for data transmission between nodes. The relevance verification stage was specifically 

executed at the grade node (see figure 1b). This node receives as input the user’s question and the 

retrieved contexts transmitted via the state object from the retrieve node. The grade node then checks 

the relevance of each received context against the user query and generates a binary flag of either “yes” 
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or “no”. If the flag is yes, the process proceeds to the generate node to produce an answer. Conversely, 

if the flag is no, the process is redirected to the transform query node, where the query is reformulated 

for greater optimization before the retrieval process is repeated at the retrieve node. 

2.3.3. Answer Generation. The answer generation stage is executed at the generate node, which receives 

as input the user’s question along with the contexts deemed relevant by the grade node, transmitted 

through the state object. In practice, the generate node produces an initial answer based on the provided 

document contexts. This answer is then evaluated in the answer verification stage before being delivered 

to the user as the final response. 

2.3.4. Answer Verification. The answer verification process is carried out through two conditional edges 

that serve as sequential evaluation pathways. In the first conditional edge, the system verifies whether 

the generated answer is consistent with and supported by the relevant retrieved contexts. In other words, 

this verification assesses the alignment between the answer and its supporting contexts. The outcome 

of this process is a binary flag of either “yes” or “no”. If the flag is no, the system repeats the answer 

generation process at the generate node. Conversely, if the flag is yes, the process proceeds to the second 

conditional edge. 

In the second conditional edge, verification focuses on the correspondence of the answer to the user’s 

question, ensuring that the generated response truly addresses the essence of the query. This process 

also produces a binary flag of either “yes” or “no”. If the flag is yes, the answer is considered valid and 

delivered to the user as the final response. However, if the flag is no, the system redirects the process 

to the transform query node. A summary of the verification stages in the Self-Reflective RAG workflow 

is presented in table 2. 

Table 2. Summary of the verification stage in the Self-Reflective RAG workflow. 

Type of verification Input Output Action 

Relevance of context to the user’s query 𝑞, 𝑑 
YES Proceed to generate node 

NO Redirect to transform query node 

Consistency of the answer with the relevant 

retrieved context 
𝐴, 𝐶 

YES 
Proceed to verification stage between the 

answer and the query 

NO Return to generate node 

Consistency of the answer with the user’s 

query 
𝑞, 𝐴 

YES Deliver final answer to the user 

NO Redirect to transform query node 

In this context, 𝑞 represents the user query or question, 𝑑 denotes the set of retrieved contexts, 𝐴 

refers to the answer generated by the LLM, and 𝐶 corresponds to the context from the relevant 

documents. 

2.4. Evaluation 

To evaluate the effectiveness and performance of the implemented Self-Reflective RAG, a series of 

experiments were conducted against several comparative approaches. In this case, two variations were 

tested in addition to Self-Reflective RAG itself, namely the baseline and vanilla RAG. In the baseline 

experiment, questions from the test dataset were sent directly to the LLM without going through a 

retrieval process. This approach served as an initial benchmark to compare the effectiveness of the RAG 

approach in the national accounts case study. Meanwhile, the vanilla RAG approach represents the basic 

form of Retrieval-Augmented Generation, which only combines the retriever and generator modules 
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without an additional reflective mechanism. In this study, the vanilla RAG was executed by omitting 

the self-reflection process embedded in the Self-Reflective RAG. The workflow began with text 

extraction, followed by chunking. The resulting text chunks were then converted into vector 

representations using the text-embedding-3-small model, with the outputs stored in a vector database 

as the search basis. For each question in the test dataset, the system retrieved the most relevant text 

context using the cosine similarity metric. These retrieved context snippets were subsequently passed 

to the LLM as augmented context to generate the final answer. 

The performance evaluation process of the RAG approach in this study was carried out using the 

LLM-as-a-Judge method with four main metrics [20]. The first is answer correctness, which evaluates 

the accuracy of the LLM-generated answer relative to the reference answer. The second metric is answer 

relevancy, which assesses whether the generated answer is relevant to the given question. The third 

metric is context faithfulness, which examines the consistency and alignment between the generated 

answer and the provided textual context. Lastly, context relevancy measures the degree of relevance of 

the textual context to the user’s question. The LLM-as-a-Judge method was selected because LLMs 

have been proven capable of mimicking human-like reasoning and decision-making processes. 

Moreover, this approach offers a more cost-efficient solution compared to using human evaluators and 

can be easily scaled to accommodate large-scale evaluation needs [21]. In practice, this evaluation 

method employs specific evaluators for each metric, which construct prompts to be executed by the 

LLM, subsequently producing binary assessment outputs (0 or 1) along with the rationale behind each 

decision. A value of 1 indicates that the answer meets the evaluation criterion, while a value of 0 

indicates otherwise. The final score for each metric is obtained by calculating the average of all binary 

evaluation results across the test dataset. A summary of the evaluation metrics used is presented in table 

3, while the general formula for calculating the final score of each metric is shown as follows. 

𝑆 =
1

𝑛
∑

𝑛

𝑖=1

𝑠𝑖  
(2) 

with: 

𝑛 : The total number of question–answer pairs in the test dataset. 

𝑠𝑖 : The binary value (0 or 1) assigned by the evaluator for the 𝑖-th question. 

𝑆 : The average binary score obtained from the evaluation of all questions in the test dataset. 

Table 3. Evaluation metrics and required inputs. 

Metric Required input 

Answer Correctness 𝑞, 𝐴, 𝑅𝐴 

Answer Relevancy 𝑞, 𝐴 

Context Faithfulness 𝐴, 𝐶𝑡𝑥 

Context Relevancy 𝑞, 𝐶𝑡𝑥 

In this case, 𝑅𝐴 refers to the reference answer in the test dataset, and 𝐶𝑡𝑥 denotes the relevant context 

obtained from the retrieval process. 

2.5. Chatbot Application Construction 
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In this study, the chatbot application was developed in an end-to-end manner, covering both the backend 

and the user interface (frontend), with Self-Reflective RAG serving as the main approach employed in 

the inference or answer generation process. To support communication between system components, 

the Self-Reflective RAG pipeline was deployed using FastAPI to provide API endpoints that enable 

integration and interaction with the user interface. The chatbot application itself was developed using 

the Next.js framework with JavaScript as the programming language and Tailwind CSS as the styling 

framework, ensuring a responsive and visually appealing user interface. User data and conversation 

history were stored in a MongoDB database due to its fast read–write performance, making it highly 

suitable for real-time applications such as chatbots. Overall, the architecture of the developed chatbot 

application is illustrated in figure 2. 

 

Figure 2. Chatbot application architecture. 

To assess the quality and feasibility of the developed chatbot application, evaluations were 

conducted on two main aspects: system functionality and system usability. For the functionality aspect, 

testing was performed using black-box testing by examining each core feature of the chatbot and 

verifying whether the output aligned with the predefined expectations. Meanwhile, for the usability 

aspect, the evaluation employed the Computer System Usability Questionnaire (CSUQ), which is 

designed to measure users’ perceptions regarding interface quality, ease of use, and overall satisfaction 

in interacting with the system. The details of the questionnaire items used in this instrument are 

presented in table 4. 

Table 4. CSUQ questionnaire questions. 

Question 

no. 
Question content 

1 Overall, I am satisfied with the ease of use of this chatbot application. 

2 It is very easy to use this chatbot application. 

3 I can complete my tasks (finding answers to questions related to the National Balance System) 

quickly using this chatbot application. 

4 I feel comfortable using this chatbot application. 

5 It is very easy to learn how to use this chatbot application. 

6 I am confident that I can quickly become productive using this chatbot application. 

7 The chatbot provides clear error messages that help me understand how to fix problems. 
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8 When I make a mistake while using the chatbot, I can recover and continue using it easily and 

quickly. 

9 The information provided (on-screen response messages) is clear and easy to understand. 

10 I can easily find the information I need when using this chatbot. 

11 The information provided by this chatbot helps me complete my tasks (finding answers to 

questions related to the System of National Account). 

12 The organization of information on the chatbot interface is neat and clear. 

13 The interface design of this chatbot application is pleasant. 

14 I like the interface design of this chatbot application. 

15 This chatbot has all the functions and capabilities I expect. 

16 Overall, I am satisfied with this chatbot. 

There are four main types of scores generated from the CSUQ questionnaire [22], namely: (1) the 

overall score, calculated as the average of all questions (items 1 to 16); (2) the system usability score, 

which is the average of items 1 to 6; (3) the information quality score, based on the average of items 7 

to 12; and (4) the interface quality score, obtained from the average of items 13 to 15. Each item is rated 

on a Likert scale of 1 to 7, with lower scores indicating a higher level of user satisfaction. In addition, 

CSUQ assessments can also be converted into percentages to facilitate the quantitative interpretation of 

results using the following formula [23]. 

𝐶𝑆𝑈𝑄 = 100 − (
∑16𝑛=1 𝐶𝑆𝑈𝑄𝑛

16
− 1) ×

100

6
 

(3) 

with: 

𝐶𝑆𝑈𝑄  : The overall CSUQ score expressed as a percentage. 

𝐶𝑆𝑈𝑄𝑛 : The score of the n-th CSUQ question. 

In this context, the evaluation scores converted into a percentage scale can be interpreted as 

indicators of the level of user acceptance of the system. A score above 70 indicates that the system is 

deemed feasible and acceptable to users, as it has met expectations in terms of usability, information 

quality, and interface design. Conversely, a score below 50 suggests that the system is considered 

unacceptable, as it fails to provide an adequate user experience. Meanwhile, scores ranging between 50 

and 70 reflect a marginal or unstable level of user satisfaction, thereby requiring further improvements 

to achieve an optimal level of acceptance. 

3. Result and Discussion 

3.1. Main Results 

The experimental performance of the Self-Reflective RAG approach and its comparative variations is 

presented in table 5. Based on table 5, it can be observed that each pipeline configuration yields different 

performance across the evaluation metrics. In the answer correctness metric, the Self-Reflective RAG 

approach demonstrates the best performance with a score of 0.80, higher than both the Baseline (0.66) 

and Vanilla RAG (0.56). This indicates that the reflective mechanism implemented in Self-Reflective 

RAG is capable of improving the accuracy of the model’s generated answers. In the answer relevancy 
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metric, all three approaches show consistent results with a high score of 0.98, indicating that whether 

without retrieval or with different RAG variations, the generated answers are relatively aligned with the 

given questions. 

Meanwhile, in the evaluation dimension that involves context, a significant difference is observed. 

On the context faithfulness metric, Vanilla RAG only recorded a score of 0.42, whereas Self-Reflective 

RAG achieved 0.70, indicating that the reflection mechanism helps the model maintain consistency 

between the generated answers and the context retrieved from the knowledge base. The Baseline, 

however, has no value on this metric since it does not involve any context retrieval process. For the 

context relevancy metric, both Vanilla RAG and Self-Reflective RAG obtained the same score of 0.93, 

showing that the retrieved documents are consistently relevant to the given questions. As with the 

previous case, this metric is not applicable to the Baseline. Overall, these results demonstrate that Self-

Reflective RAG provides a significant improvement on the answer correctness and context faithfulness 

metrics compared to Vanilla RAG, confirming that the addition of a reflective mechanism contributes 

positively to answer quality, particularly in terms of accuracy and alignment with the available context. 

Table 5. Performance evaluation results. 

Approach type Answer corretness Answer relevancy Context 

faithfulness 

Context relevancy 

Baseline 0.66 0.98 − − 

Vanilla RAG 0.56 0.98 0.42 0.93 

Self-Reflective RAG 0.80 0.98 0.70 0.93 

To estimate the resources required for the inference process in each evaluated approach, a systematic 

observation was conducted on cost and time consumption through direct measurements using the 

Application Programming Interface (API) service provided by OpenAI as the inference model provider. 

This observation was carried out during the testing phase with the test dataset for each approach. Before 

and after the execution of testing, cost consumption data was monitored via the OpenAI developer 

dashboard to identify the difference in resource usage. The difference was then divided by the number 

of questions in the test dataset, which on average contained 26.6 tokens per question, to obtain the 

estimated average cost per query. Meanwhile, the estimation of time consumption was calculated by 

recording the total duration required by each approach to complete the inference process for all 

questions in the test dataset. The recorded time was then divided by the total number of questions, 

resulting in the estimated average inference duration per query. This method was chosen because it can 

represent the actual cost and time requirements of the entire inference process, including additional 

overheads caused by the dynamic and iterative reflection mechanism in the Self-Reflective RAG. 

Detailed results regarding the estimated operational time and cost for each RAG approach are presented 

in table 6. 

Table 6. Average inference time and cost per question. 

Approach Type Average inference time per question 

(seconds) 

Average inference cost per question 

(USD) 

Baseline 5.36 0.000190 

Vanilla RAG 3.86 0.000095 



  

 

 

258 
 

M Farhan et al 

Self-Reflective 

RAG 

10.71 0.001714 

Based on the information presented in table 6 above, it is evident that Vanilla RAG demonstrates 

the most efficient performance in terms of both time and cost. Conversely, the Self-Reflective RAG 

approach records the highest levels of time and cost consumption. The elevated inference overhead in 

the Self-Reflective RAG approach is primarily attributed to the iterative nature of the reflection process. 

These results indicate that while the reflection mechanism can improve answer quality, it also entails 

significant overhead in terms of inference time and cost. 

3.2. Analysis 

Although the Self-Reflective RAG approach has been proven to improve the quality and accuracy of 

answers, further analysis shows that this method is not always superior in every case. It was found that 

approximately 9.5% of the questions could not be answered correctly by Self-Reflective RAG but were 

successfully answered by other approaches. Two examples are presented in table 7. 

Table 7. Examples of questions that could not be answered correctly by the Self-Reflective RAG 

approach but were answered correctly by other approaches. 

Question Reference answer Correctly 

answered by 

Produk yang masih tersedia 

dalam penguasaan produsen 

dikateogrikan sebagai apa? 

Products that remain under the 

control of the producer are 

categorized as what? 

Produk yang masih tersedia dalam penguasaan produsen 

dikateogrikan sebagai persediaan (inventori). 

Products that remain under the control of the producer 

are categorized as inventories. 

Baseline, 

Vanilla RAG 

   

Apa syarat seorang individu 

dikatakan sebagai anggota rumah 

tangga (ART)? 

What are the criteria for an 

individual to be considered a 

member of a household? 

Seorang individu dianggap sebagai Anggota Rumah 

Tangga (ART) jika menetap atau berniat untuk menetap 

pada bangunan tempat tinggal rumah tangga tersebut. 

An individual is considered a member of a household if 

they reside or intend to reside in the dwelling occupied 

by that household. 

Baseline 

In the first question in table 7 above, the Self-Reflective RAG approach produced an answer stating 

that products available under the control of producers are categorized as cultivated biological resources. 

The evaluator assessed this answer as incorrect because the concept of cultivated biological resources 

differs from inventory, which was the correct reference answer. This error occurred due to the stringent 

verification process in the Self-Reflective RAG workflow, which places excessive emphasis on literal 

alignment with the context, thereby overlooking correct information that is not explicitly reflected in 

the text of the question. In the second question, the Self-Reflective RAG approach produced an answer 

that an individual is considered a household member if they are an individual or a group of individuals 

who share the same residence, pool part or all of their income and assets, and collectively consume 

certain goods and services, particularly food and housing. Although this answer includes several 

relevant elements, the evaluator deemed it incorrect because it does not directly address the fundamental 

criterion stated in the reference answer, namely residing or intending to reside in the household 
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dwelling. These two examples demonstrate that while the self-reflection mechanism in Self-Reflective 

RAG is effective in reducing hallucination, it may also expand the scope of answers or overlook the 

core concept that should be used to correctly respond to the question. Furthermore, when the analysis 

is extended to the combination of evaluation metrics used, two notable findings emerge. The first is 

cases where the answer was judged correct, but the context used was deemed irrelevant. In the Self-

Reflective RAG approach, such cases occurred at a proportion of 3.8%. The second is cases where the 

answer was also judged correct, but the context used failed to meet the criterion of faithfulness. The 

proportion of such cases in the Self-Reflective RAG approach was 22.8%. These findings indicate that 

the internal knowledge of the LLM contributed to producing a final answer that was still judged correct. 

3.3. Results of Chatbot Application Development 

The presentation of the chatbot application development results in this study is divided into two main 

parts: the final implementation and the evaluation. The implementation section focuses on the preview 

of the application’s interface, while the evaluation section outlines the results of application testing, 

both in terms of system functionality and usability level. A detailed explanation of each part is presented 

as follows. 

3.3.1. Final Implementation. In the developed chatbot application, there are three main pages that serve 

as the core components of the user interaction flow with the application, namely the login/register page, 

the chat page, and the admin page. These three pages are designed to support the overall functionality 

of the application, ranging from user authentication and authorization, conversational interaction, to 

data management by the administrator. The details of each page are explained as follows. 

A. Login/Register Page 

This page serves as the main entry point for every user before they can access and further interact 

with the chatbot application. On this page, users are required to log in using an already registered 

account, or to register first if they do not yet have one. The authentication and authorization processes 

in this application are supported by Clerk services, which provide a secure and efficient identity 

management system. The interface of the login and register pages can be seen in figures 3 and 4 below. 



  

 

 

260 
 

M Farhan et al 

 

Figure 3. Login page. 

 

Figure 4. Register page. 

B. Chat Page 

This page serves as the main interface used by users to engage in conversations with the developed 

chatbot application. On this page, users can send questions and receive response answers based on the 

queries submitted. The initial display of the chat page can be seen in figure 5 below. 

 

Figure 5. Initial display of the chat page. 

After the user submits a question and receives a response, the chat page will automatically display 

the conversation history between the user and the chatbot, as shown in figure 6. This history is presented 

in a dialog format, making it easier for users to revisit previous interactions. 
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Figure 6. Chat page display with conversation history. 

On this chat page, users can also utilize the sidebar to perform various additional functions. For 

instance, they can start a new conversation session, browse and select previous conversations, rename 

existing conversations, or delete those that are no longer needed. The display of the chat page with the 

sidebar can be seen in figure 7 below. 

 

Figure 7. Chat page display with conversation sidebar. 

C. Admin Page 

The admin page is specifically designed to manage the knowledge base and vector store. In terms of 

accessibility, this page can only be accessed by users with the admin role to ensure system security and 

guarantee that data management is carried out by authorized personnel. Through this page, the admin 

has the authority to add, modify, or delete the knowledge base according to the needs and dynamics of 

the available information. In line with this, the admin can also update the vector store, especially when 

changes or additions occur in the knowledge base, so that the system continues to provide relevant and 
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contextual retrieval results. The display of the admin page in the developed chatbot application can be 

seen in figure 8 below. 

 

Figure 8. Knowledge base and vector store management page display. 

3.3.2. Evaluation. After the final implementation was completed, a comprehensive evaluation was 

carried out on the developed chatbot application. Two main types of evaluation were applied, namely 

functionality testing and system usability testing, detailed as follows. 

A. System Functionality Testing 

System functionality testing was conducted to ensure that each feature in the developed chatbot 

application operates according to the specifications and expectations. The method used in this testing 

is black-box testing, in which the tester provides input as a user without accessing or knowing the 

application’s source code, and then observes the system’s output. The features tested in this process 

include registration, login and logout, profile management, interaction and session management, 

knowledge base management, vector store management, and user role management. Based on the 

testing conducted, it was found that all functional requirements of the system for these features were 

successfully met. 

B. System Usability Testing 

The system usability testing was conducted to evaluate the extent to which the developed chatbot 

application can be accepted and effectively used by end users. In this study, the primary instrument 

employed was the CSUQ, which is designed to measure users’ perceptions of system usability quality. 

The testing process involved 18 respondents, all of whom were employees of Statistics Indonesia (BPS) 

working in the field of national accounts. The evaluation results are summarized in table 8, which 

presents the average scores for each assessment indicator. Based on these results, it can be concluded 

that the developed chatbot has generally met user expectations and is considered suitable for use. This 

finding is further supported by an overall average score that exceeds the feasibility threshold of 70%, 

achieving a final score of 74.07%. Moreover, when examined by individual assessment criteria, it was 

found that the system usability criterion obtained a score of 2.435, information quality scored 2.657, 

and user interface quality scored 2.592. Overall, these results indicate that the aspects of system 

usability, information quality, and interface design were well received by end users. Nevertheless, some 

respondents expressed concerns regarding the inaccuracy of certain answers as well as the relatively 

long inference process. The issue of inaccurate answers is essentially caused by the limited coverage of 
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information in the knowledge base used, as well as frequent errors in the relevant context filtering 

process within the Self-Reflective approach. Meanwhile, the slow inference process is indeed a 

consequence of the complexity of the iterative workflow in the Self-Reflective RAG approach, which 

involves multiple stages. 

Table 8. Results of usability testing using CSUQ 

Question no. Criteria Score Criteria score 

1 

System usability 

2.444 

2.435 

2 1.777 

3 2.833 

4 2.500 

5 2.277 

6 2.77 

7 

Information quality 

2.833 

2.657 

8 2.666 

9 2.555 

10 2.944 

11 2.833 

12 2.111 

13 

User interface quality 

2.222 

2.592 14 2.388 

15 3.166 

16  2.555  

Average score 2.555  

Percentage conversion 74.074%  

 

4. Conclusion 

This study specifically implements and evaluates Self-Reflective RAG as an approach to support the 

learning process of national accounts through LLM-based question answering tasks. The approach 

integrates an internal reflection mechanism that enables the model not only to generate answers but also 

to critically assess the relevance of the retrieved context and the quality of the responses produced. 

Evaluation results in the domain of the national accounts system show that Self-Reflective RAG 

achieved an answer accuracy rate of 80% and an answer relevance rate of 98%, while also 

demonstrating significant improvements compared to both the baseline approach and Vanilla RAG. 

Nevertheless, further analysis revealed that this approach still faces challenges in improving accuracy 

in certain cases as well as in computational efficiency due to the iterative nature of the reflection 

process. Therefore, the findings of this study open new avenues for further investigation, including the 
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application of more precise context selection techniques, optimization of the inference pipeline, and the 

exploration of more diverse knowledge bases to broaden the coverage and flexibility of the system. 
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