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Abstract. In Indonesia, dengue fever is a serious public health problem. The increase in dengue
fever cases is influenced by climate change and social vulnerability factors. This study focuses
on West Java Province in 2019-2023, aiming to describe the spatial-temporal pattern of dengue
fever incidence and analyze the influence of climate factors and social vulnerability using a
spatial-temporal model, namely Geographically Temporally Weighted Regression (GTWR).
The exploration results show a high concentration of dengue fever incidence rates in 2019, while
in 2023, the intensity of dengue fever incidence decreases. The GTWR model produces local
parameters across various regions and time periods, indicating that in most regencies/cities,
rainfall, population density, access to inadequate sanitation, health facility ratio, and education
level have a positive effect on dengue fever incidence rates, while land surface temperature and
the percentage of poor people have a negative effect. From the GTWR model results, areas with
high levels of dengue fever vulnerability can be identified as priorities for dengue fever
management interventions. Therefore, this study contributes to early warning research and
dengue fever control program planning by considering the risk of dengue fever vulnerability in
each region.
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1. Introduction

Dengue hemorrhagic fever (DHF) is a disease transmitted through vectors (mosquitoes). The incidence
of DHF has increased drastically worldwide in recent decades, with cases reported to the World Health
Organization (WHO) increasing from 505,430 cases in 2000 to more than 6.5 million cases and more
than 7,300 deaths due to DHF reported in 2023. Diseases transmitted by vectors in the form of
mosquitoes are a major challenge of neglected tropical diseases in efforts to achieve Sustainable
Development Goals 3.3 (SDGs 3.3): " By 2030, end the epidemics of AIDS, tuberculosis, malaria and
neglected tropical diseases and combat hepatitis, water-borne diseases and other communicable
diseases.” An increase in new cases of dengue fever infections occurs annually, recorded in more than
100 dengue-endemic countries, including countries in Southeast Asia, Africa, the Americas, the Eastern
Mediterranean, and the Western Pacific [1]. Countries in the Southeast Asian region contribute the most
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cases of dengue fever globally [2]. Global Strategy for Dengue Prevention and Control places Indonesia
as the country with the second-highest number of dengue fever cases in the world [1].

The government's commitment has been outlined in the 2020-2024 National Medium-Term
Development Plan (RPIMN), which emphasizes the prevention and control of dengue fever risk factors.
In order to achieve zero dengue deaths by 2030, the 2020-2024 RPJMN has set a target indicator of
95% of regencies/cities with a dengue fever incidence rate of less than 10 per 100,000 population by
2024. Dengue fever transmission has the potential to trigger extraordinary events that cause community
vulnerability and can lead to death. In the Roadmap Neglected Tropical Diseases (NTDs) 2021-2030,
dengue fever is included in the target of 20 diseases and disease groups to be prevented and controlled.
The target for dengue fever control is to reduce the death rate (Case Fatality Rate, CFR) from 0.50% in
2024 to 0% in 2030 [3]. By the end of 2023, cases of dengue fever occurred in 464 regencies/cities in
34 provinces in Indonesia. The distribution of dengue fever deaths was concentrated in three provinces
on the island of Java, namely West Java, Central Java, and East Java, which contributed 31% of the total
114,720 cases in Indonesia. The three provinces with the highest dengue fever incidence rates during
the 2019-2023 period were West Java, East Java, and Central Java. Among the three, West Java had the
highest average dengue fever incidence rate during that period, at 52.07 cases per 100,000 population
per year, followed by East Java (28.13) and Central Java (21.96). West Java Province consistently had
a higher dengue fever incidence rate than East Java and Central Java throughout 2019 to 2023. Although
the dengue fever incidence rate in West Java decreased in 2023, it remained far above the RPJIMN target
of less than 10 cases per 100,000 population.

West Java Province is one of the most densely populated regions in Indonesia, with a population of
approximately 50 million. West Java's proximity to Jakarta makes it a hub of economic activity and high
population mobility. This contributes to high vulnerability to infectious diseases such as dengue fever,
primarily due to the spatial heterogeneity in population distribution and healthcare infrastructure [4].
Dengue fever transmission in highly densely populated areas, with a population density of >1,000
people/km? has the highest rate of dengue exposure [5]. In addition, rapid urbanization due to economic
growth in the central, northwest, and northeastern regions of West Java increases the opportunity for
expansion of the Aedes aegypti vector habitat, thereby accelerating the spread of the virus. The high
incidence of dengue fever is caused by various social and environmental factors, such as population
density and mobility [2]. Climate change is known to be a driver of increased vectors and dengue
transmission [6]. Climate change can be seen in the increase in above-average temperatures each year
and increased annual rainfall. Over the past 30 years, Java Island has experienced an increasing average
temperature trend [7] and is projected to be one of the areas most affected by rising surface temperatures
and changing rainfall patterns [8].

Dengue fever transmission by Aedes mosquitoes is higher in areas with high levels of vulnerability,
such as areas with high levels of poverty, limited access to health care, and inadequate sanitation [9].
This indicates that the vulnerability of the population to infectious diseases is determined by the level
of dengue fever as the exposure population to the condition [5]. This supports the existence and
transmission vector, which relates to water and vulnerability to socio-cultural, economic which form
sensitivity to the impact of Dengue Fever. Social vulnerability measurement (Social Vulnerability)
functions to determine the level of community sensitivity to global change and the community's ability
to respond and recover from the negative impacts caused by disasters due to climate change [10].

Climate change and social vulnerability have the potential to increase the risk of dengue fever
transmission. Global climate change impacts the spread of vector-borne infectious diseases, such as
accelerating the rate of reproduction, increasing the vector's ability to invade, and shortening the
pathogen's incubation period [6]. Conversely, areas with high levels of social vulnerability have a higher
risk of dengue virus transmission than areas with low levels of social vulnerability. Dengue transmission
depends on the interaction between the host, the virus, the mosquito, and environmental factors. Given
the limited flight range of mosquitoes (generally 512 meters or less), local dengue transmission is
generally influenced by population density and movement, both on a broad scale (national or
international) and a smaller scale (regional, regencies, community, or neighborhood) [11]. Furthermore,
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dengue cases tend to form clusters both in space and time, so spatial analysis is necessary to understand
the factors supporting dengue transmission [12].

Extensive research on dengue fever has been conducted, including temporal, spatial, spatio-temporal
modeling, and vulnerability mapping. Research and development of a temporal prediction model for
dengue fever incidence used the Generalized Additive Models (GAMSs) [13]. Spatial modeling has also
been carried out based on the influence of environmental and social factors on the spatial distribution of
dengue fever using the Geographically Weighted Regression (GWR) [14]. Meanwhile, modeling is
Bayesian modeling has also been done by using a Bayesian hierarchical spatial model to model the
spread of dengue fever [15]. Mapping of vulnerability to dengue fever was also studied using a multi-
criteria decision analysis (MCDA) approach based on social and climate aspects [16]. However,
previous studies have generally been limited to a single dimension (spatial/temporal only) and have not
integrated vulnerability aspects into a spatial-temporal approach. However, changes in social and
climate vulnerability phenomena also indicate that risks are non-static, meaning they change over time,
and these changes must be considered, both in current vulnerability assessments and in developing
corrective interventions (for existing risks) and prospective (for future risks) [9].

Most spatial-temporal modeling uses global modeling that assumes spatial-temporal effects are
constant across regions. However, this assumption of stationarity over time and space is generally
unrealistic because parameters tend to vary across regions [17]. Research proposed Geographically
Weighted Regression (GWR) for coefficient variation analysis and testing the significance of spatial
variation [18]. Spatial-temporal weighting matrix to combine spatial and temporal information to form
a Geographically-Temporally Weighted Regression (GTWR) model [19]. GTWR model parameter
estimation is performed locally for each location and time point, thus capturing the spatial-temporal
heterogeneity of the influence of climate change and social vulnerability factors on dengue fever
incidence rates. Therefore, this study contributes by applying the GTWR model to determine the
influence of spatial and temporal heterogeneity on dengue fever incidence rates while identifying
significant influences of climate change and social vulnerability factors. Furthermore, GTWR results
are also expected to provide spatial-temporal information that can be useful for determining priority
areas for dengue control interventions.

Based on problem identification, this research focuses on West Java Province in 2019-2023, with
the following objectives:

1. Obtaining a general spatial and temporal overview of the incidence rate of dengue fever.

2. Analyzing the influence of climate change and social vulnerability on the incidence rate of dengue

fever.

The data on dengue fever used in this study were obtained from reports from health facilities, such
as hospitals and community health centers, collected through the official surveillance system of the
Ministry of Health of the Republic of Indonesia. This data does not differentiate between the number of
patients diagnosed with Dengue Fever, Dengue Hemorrhagic Fever, or Dengue Shock Syndrome.
Reports from health facilities may be subject to reporting bias, particularly if there are undiagnosed or
unreported cases, such as patients who do not access health services.

2. Research Method

The data for this study are secondary data obtained from the Public Health Office, Satellite Imagery,
and the Central Statistics Agency (BPS). Moderate Resolution Imaging Spectroradiometer (MODIS)
and Climate Hazards Group InfraRed Precipitation with Station (CHIRPS) satellite imagery data were
collected from 2019-2023 using Google Earth Engine (GEE) Code Editor as presented in Table 15.
Meanwhile, official data statistics were obtained from BPS and the Public Health Office as displayed in
Table 16.

Table 15. Research variables from satellite imagery data

Variable (unit) Source Resolution GEE Catalog
Spatial  Temporarily Source
784
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Land surface 1 km 8 days MODIS_006_MO
temperature (°C) D11A2
Rainfall (mm/year)  ~5km 24 hours Ioes
CHG_CHIRPS

Table 16. Research variables from official data statistics

Variable (unit) Source
Dengue fever incidence rate (cases/100,000 public health
population) office
Percentage of poor population (%) BPS
Population density (people/km?) BPS
Percentage of households that do not have access to BPS
proper sanitation (%)
The ratio of health facilities (number of primary .
health care center, integrated health post, and pub Ilfcf_health
hospital/100,000 population) ottice
Percentage of female population aged 25 years and BPS

over with at least a high school education (%)

In order to obtain a general picture of the characteristics of the research variables, the answer was to
use Exploratory Spatial-Temporal Data Analysis (ESTDA) is a descriptive analysis technique for data
sets that encompasses both spatial and temporal aspects. In this study, ESTDA is presented using
thematic maps to depict the research variables annually for each regency/city. Furthermore, boxplot
visualization is used to observe the distribution and changes in data trends. Inferential analysis in this
study was conducted to determine the influence of climate change factors and social vulnerability on the
incidence rate of dengue fever using a spatial-temporal model: GTWR.

2.1. Geographically-Temporally Weighted Regression (GTWR)

Fotheringham et al. [13] used a weighting matrix to combine spatial and temporal information to form
Geographically-Temporally Weighted Regression (GTWR). The matrix is constructed based on the
spatial-temporal distance calculated from the coordinates (u;, v;, t;) between the observation point iand
all other observations.

yi = Boluy vy ty) + zkﬁk (uy, vi, t) X + & (1)
with,
Vi : Dependent variable (dengue fever incidence rate) at location and time i
Xik : Independent variables k at location and time i

Bo(u;, v;, t;)  : Coefficient intercept at the observation location (u;, v;) and time(t;)
Br(u;, v, t;)  : Regression coefficient of independent variables on location (u;, v;) and time (t;)
& : observation error at the assumed location and time i, &; ~ N(0,02).

GTWR parameter estimation uses the Weighted Least Square (WLS). WLS estimation assumes that
the error € are not correlated with each other, but have varying variances [14]. For parameter estimation
B(u;,v;, t;), different weights are used at each observation point, with the parameter estimation
calculation as follows:

B(uy, vy ty) = [XTW (u;, vy, t)X] T XTW (w, vy, t,)y (2)
Here, X is the design matrix containing the independent variables (with the first column equal to 1 to
represent the intercept), X7 denotes the transpose of matrix X. y is the vector of dependent variable
values. The matrix W (u;, v;, t;) = diag(w;y, Wiz, ..., Wiy)is a diagonal matrix n x n containing weights
at each location and time point iand elements other than the diagonal are zero. With w;;is the weighting
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of the data in jthe modeling for the location and time point i. The elements in W (u;, v;, t;) are calculated
from kernel functions Gaussian spatial-temporal, as follows:

1/d3\ 1/d];
vy =eo| =3(52) -2 () ¢

And for kernel functions Bi-square spatial-temporal inner elements W (u;, v;, t;)are calculated from:
2
dS\? /dT\? 5.2 2
vo=4(0=() ~(2) ) a7 (&) +(E) <157=12.m (4
s T hs hr

0, others
With w ;; is a weighting agent data j-th on modeling for observation point (u;, v;, t;)-th. Thus, for one

point i, the weight is calculated for j = 1,2, ..., n. With, dj; = \/(”i — uj)2 + (v; — vj)z is the spatial

distance and dl-Tj = |t; — t;| is the temporal distance. Bandwidth spatial (hs) and bandwidth temporal
(hr) is determined based on corrected Akaike Information Criterion (AICc) [15]. The optimum
bandwidth is determined based on the smallest AlCc value.
. n+ tr(L)
AICC =2n lOg(O’) + TllOg(ZT[) +n (n—Z——tr(L)) ( 5)
Where n is the number of samples, & is the estimated standard deviation of the error, and trace(L) is
the trace from the projection matrix L.

L = X(XTW(u;,v;, t)X) " XTW (uy, vy, t;) (6)

In the GTWR model, the estimated parameters are local, meaning their values differ at each
observation location and time point. In some cases, data points that are too far from the observation
location have little contribution to the estimation process because they receive low weight in the kernel
function. Therefore, local standard errors not only reflect statistical variability but also show the local
significance of the estimated regression coefficients [18].

To test the significance of the local parameters, the following test statistic is used.

ACKAD, (7)
tvalue = -
o Bkk
It is known By, that is the diagonal element kof the variance-covariance matrix BB,

— (XTW(w v t)X) XTW (s vi t: 52 = SSE
B = (X"W(u,v;, t)X) X"W(u;,v;,t;) and 6 e I T
with,

SSE=YT'(I-L)"(I- L)y
Null hypothesis rejected if |t,qe| > t52/5,(a/2) MeANS local regression parameters f3;, at location and
time i do significantly influence the dependent variable. According to Leung et al. [21], &, =
trace[(I — L)T(I — L)]” for v = 1, 2. Here, v serves as an index to generate two values, &; and &,
which are employed to approximate the degrees of freedom of the test statistics in equation (7).

2.2.  Spatial-Temporal Heterogeneity

Regression with ordinary least squares (OLS) modeling must fulfill classical assumptions to obtain the
Best Linear Unbiased Estimator (BLUE). In OLS modeling on spatial data, the assumption of
homoscedasticity is often violated due to the variance of the error differs depending on the observation
location. This difference occurs because the data conditions at one location are not the same in terms of
characteristics. Thus, the obtained regression parameters will vary partially. Spatial-temporal data refers
to the concept of the relationship between events occurring at various points in space and time. Spatial-
temporal data is described as data that encompasses both spatial and temporal aspects. Spatial data refers
to information about the location of an event, while temporal data refers to the time of the event.
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Spatial heterogeneity in data can be detected using the Breusch-Pagan (BP) test statistic [16]. The
decision to reject the null hypothesis is made if the Breusch-Pagan (BP) statistic value is greater than
)(5, where p is the number of independent variables in the model. If a decision to reject is obtained Hyin
OLS modeling, there are differences in characteristics between one location and another, or there is
heterogeneity in the data.

2.3. Classical Assumptions

A multicollinearity test was conducted before building the model. Multicollinearity is a condition where
there is a perfect relationship (high correlation) between the independent variables in the model. This
assumption was tested using the Variance Inflation Factor (VIF). A VIF of more than 10 is considered
to indicate perfect collinearity between the independent variables. Regression analysis assumes that the
error spread follows a normal distribution with a mean of zero and a variance of a2,6;~N (0, c2) [17].
Therefore, checking the normality assumption error, both in the OLS and GTWR models, was performed
using the Kolmogorov-Smirnov test. In addition, the Durbin-Watson (DW) test was applied to detect
the presence of autocorrelation in the residuals of the regression model.

2.4, Model performance

In this study, the performance of GTWR and OLS was compared to determine which model better
describes spatial-temporal heterogeneity. The model performance was evaluated using adjusted RZ.
Adjusted R2 for the OLS model [17], calculated from:

- 2 _ _ _ 2 n-1
Adjusted R°%s = 1 — (1 — R*) (—n_p_l) (8)

With n being the number of observations and p the number of independent variables in the model. In
the GTWR model, the number of parameters pdepends on the spatial-temporal weight structure applied
to each observation point. Therefore, the number of parameters in the GTWR model is estimated by the

effective number of parameters = (Ztr(L) - tr(LTL)) [15]. Thus, the calculation of adjusted R ?for the
GTWR model:

. 5 11 p2 n-1
Adjusted R°crwr =1 — (1 — R )(n—(ZtT(L)—tT(LTL))-1> (9)

An adjusted R? value approaching 1 indicates that the independent variables in the regression model can
explain the variation in the dependent variable better.

Local regression modeling, particularly GTWR, accounts for spatial and temporal heterogeneity by
allowing variable relationships to differ across locations and over time. Therefore, the local R? is used
to measure the model 's ability to explain data variation specifically around a particular location [18].
The formula for local R2, R?, is:

R? = (TTSY — SSEY)/TTS" (10)

TSS "is the geographically weighted total sum of squares, defined as: TTS" = ¥, ; w;; (yj — y)z.
SSE "is the geographically weighted sum of squares of the errors, defined as:

A2
SSE™ = X;wi; (v, — 9;)"
w;;is the geographic weight between observation point j and regression point i.

3. Result and Discussion

3.1. Overview of Dengue Fever Incidence Rate in West Java

787

VL 4

<



A N Hanif et al

The spatial-temporal distribution of dengue fever incidence rates in regencies/cities in West Java from
2019 to 2023 was obtained to obtain a general spatial-temporal picture of dengue fever incidence rates,
as well as climate change and social vulnerability factors. The map is colored using the natural breaks
(Jenks) method to group dengue fever incidence rates into classes that describe the natural boundaries
of data distribution. The years 2019 and 2023 were chosen as the focus of spatial visualization and
interpretation.

2019 2023

Figure 32. Spatial Distribution of Dengue Figure 33. Spatial Distribution of Dengue Fever
Fever Incidence Rate in West Java, 2019. Incidence Rate in West Java, 2023.

In 2019 (Figure 32), most regencies/cities in West Java, Central Priangan Region, experienced high
dengue fever incidence rates, indicated by the darker red color. Dengue fever incidence rates tended to
be clustered in urban areas, such as Central Priangan (Bandung, Bandung City, and surrounding areas).
The Bandung area and its surroundings are experiencing rapid land use changes into residential areas,
resulting in the emergence of dense settlements that are not supported by basic sanitation, adequate
access to clean water, and a clean environment, which ultimately increases the risk of dengue fever
transmission [18]. In 2023 (Figure 33), a decrease in the intensity of dengue fever incidence rates was
observed in several regencies/cities, indicated by a shift to lighter colors. While there was a general
downward trend, several regions experienced increases, including Bogor City, which had the highest
dengue fever incidence rate in 2023.
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25%~75% I Range within 1.5 IQR — Median
Figure 34. Temporal Distribution of Dengue
Fever Incidence Rate in West Java, 2019 — 2023.

Boxplot visualization (Figure 34), in 2022, the median incidence rate was highest compared to other
years. In contrast, 2021 showed the lowest incidence distribution. The decline in the number of dengue
cases in 2021 reported in several regions was due to the increase in the number of COVID-19 cases,
which had affected dengue epidemiological surveillance, resulting in underreporting of dengue cases
[19]. In addition, the difficulty of timely diagnosis and public concern about the risk of COVID-19
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infection were other reasons for the decline in the number of dengue cases. The dengue virus is generally
carried by travelers [20]. Therefore, self-isolation and quarantine due to COVID-19 led to a decrease in
the dengue incidence rate.

3.2.  The influence of climate change and social vulnerability factors on the dengue fever incidence
rate

To determine the influence of climate change and social vulnerability variables on dengue fever
incidence rates without considering observation locations and time, regression modeling with ordinary
least squares (OLS) was used. This model assumes that the influence of independent variables on dengue
fever incidence rates is constant across regions and time. However, this assumption is generally
unrealistic because parameters tend to vary across regions and time [17]. Therefore, the OLS model was
used as a base model in this study, which serves as a starting point for comparison to assess whether the
addition of spatial and temporal aspects to the GTWR model can improve performance in capturing
local variations in the influence of climate change and social vulnerability on dengue fever incidence.
By comparing the results of the performance between the OLS and the GTWR, we can determine the
extent to which the spatial-temporal model can overcome the limitations of the parameter homogeneity
assumption in the global model. The OLS is displayed in table 3:

Table 17. OLS model parameter estimation results.
Standard

Variables Coefficient Error tvatue
Intercept -130.912 87.230 -1.501
Land surface temperature -1.288 2.847 -0.453
Rainfall 0.011 0.005 2.126"
Percentage of the poor population 2.326 2.184 1.065
Population density 0.005 0.002 2.659"
Percentage of ho_useholds do not have access 0.488 0336 1451
to proper sanitation
Ratio of the number of health facilities 0.776 0.263 2.952"
Percentage of the female population aged 25
years and over with at least a high school 1.649 0.625 2.638"
education

“ Regression parameter is statistically significant at significance level 5% and number of samples 135

The results of identifying non-multicollinearity based on the VIF values for each independent
variable in the regression model. Based on the VIF limit of 10, all variables in the model do not
experience perfect multicollinearity. The Kolmogorov-Smirnov test produced a statistical value of
0.087, which is smaller than the critical point (0.117) at a number of samples of 135 and a significance
level of 5%. Because it failed to reject the null hypothesis, the error follows the normal distribution, and
the assumption of normality error met. The statistical value of the Durbin—Watson test is 1.736, which
is between lower and upper limits of the table Durbin-Watson, then according to the decision table it is
in the inconclusive region, so it cannot be determined from the table whether there is autocorrelation or
not. The p-value obtained was 0.048, which is less than the 5% significance level, so the decision was
to reject the null hypothesis. Thus, based on the p-value, it can be concluded that there is significant
autocorrelation in the OLS model error

The Breusch-Pagan (BP) test yields a statistical value of 21.256, which is greater than the critical
value (14.067) at a significance level of 5%, thus rejecting the null hypothesis, meaning the
homoscedasticity assumption is violated and the error variance is not constant. From this test, indicates
heterogeneity in the data based on the distribution of data from year to year. Thus, a model is needed
that can address spatial-temporal heterogeneity, one of which is the GTWR model.
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3.3.  The influence of climate change and social vulnerability factors on the dengue fever incidence
rate based on GTWR model
The dengue fever incidence rate variable as the dependent variable, social vulnerability factors and
climate change as independent variables are used to construct a regression relationship that takes into
account regional and time aspects using the GTWR model. The first step of the analysis is to calibrate
the GTWR model to obtain A and h; minimize the AlICc. Good kernel function Gaussian and Bi-
square, used for GTWR model calibration. Based on the AlICc criteria the selected spatial and temporal
bandwidth values are hs = 0.868 and hr = 5 with an AlCc of 1413.200 based on the kernel function Bi-
square.

From this model, we obtain n = 27 (location) x 5 (time) = 135 equations based on location and time.
The summary statistics of the GTWR model parameter estimates are presented in Table 18.

Table 18. Summary statistics of GTWR model parameter estimates.

Variables Coefficient Minimum Median Maximum

Intercept Bo (u;, vy, t) -0.581 -0.185 -0.0002
Land surface temperature By (us, v;, t) -14.451 -5.463 -0.033
Rainfall By (us, vy, t) -0.015 0.011 0.028
Percentage of the poor A

Dopulat o P B (ui, vir £7) 9360  -0.072 14.046
Population density Ba(ui, vy, ty) -0.006 0.006 0.049
Percentage of households do not 4

have access to proper sanitation Bs (ui vy, 1) ALY sl ARl
Ratio of the number of health A

Percentage of the female

population aged 25 years and B (uy vy, t;) -0.796 1,630 6,067

over with at least high school
education

3.4. Model performance

The GTWR model has R? and adjusted R?were 0.7006 and 0.5611 respectively which are much higher
than the OLS model (R?= 0.445, adjusted R*= 0.4144). The R? value means that variables from climate
change and social vulnerability factors can explain variations in the dengue fever incidence rate of 70.06
% based on the GTWR model.

The local R?> map visually illustrates the model's ability to explain variations in dengue fever
incidence rates, and demonstrates spatial heterogeneity in model goodness-of-fit across regions. Darker
colors indicate better model goodness-of-fit, while lighter areas indicate lower model goodness-of-fit in
explaining variations in dengue fever incidence rates within that region.
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Figure 35. Local R? Distribution of The Figure 36. Local R? Distribution of The GTWR
GTWR Model, 2019. Model, 2023.

In 2019 (Figure 35), the region with the highest dengue fever incidence rate: Sukabumi City had a
local R? of 0.803. Meanwhile, in 2023 (Figure 36), the region with the highest dengue fever incidence
rate: Bogor City with a local R? value of 0.69. This indicates the good performance of the GTWR model
in areas with a high burden of dengue fever incidence rate. However, lower local R2 values in other areas
indicate that the GTWR model has limitations in explaining variations in dengue fever incidence rates
in those areas.

3.5.  The influence of climate change and social vulnerability factors on the dengue fever incidence
rate in each year

Boxplots of the regression coefficients of each variable from the climate change and social vulnerability
factors are used to explore the trend of changes in the regression coefficients of the GTWR model over
time. The regression coefficient for the same independent variable has a positive and negative coefficient
direction due to the influence of differences in spatial-temporal location. Therefore, the characteristic
differences in the spatial-temporal distribution of each regression coefficient and its influence in each
regency/city can be identified quantitatively. The median of each boxplot reflects the direction and
dominant influence of each variable in a given year.
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Figure 37. Témporéi Diétribuiion Of Figure 38. Tempoiél Disiiibutidn of Significant
Significant Regression Coefficients of Land Regression Coefficients of Rainfall.
Surface Temperature.
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Figure 39. Trémporrél Diétribuiion Of Figure 40. 'iemporrral Diéiributinn of Significant
Significant Regression Coefficients of The Regression Coefficients of Population Density.
Percentage of The Poor Population.
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Figure 41. fémpofél ID_i--stribu-fion of Figure 42. :I'empo}al Diéiributi_c;n of S-ignificant
Significant Regression Coefficients of The Regression Coefficients of The Ratio of Health
Percentage of Households do Not Have Facilities.

Access to Proper Sanitation.

25%~75% (Negative Relationship)
25%-75% (Positive Relationship)

T Range within 1.5 IQR

— Median

} 301

Figure 43. Temporal Distribution of Significant
Regression Coefficients of The Percentage of The
Female Population Aged 25 Years and Over with
at Least a High School Education.

Land surface temperature is an indicator in assessing the level of environmental exposure to the risk
of vector-based diseases such as dengue fever. Higher surface temperatures support vector reproduction,
such as egg laying, egg hatching, and larval development, thus encouraging virus transmission at higher
temperatures [27]. Land surface temperature (Figure 37), the median coefficient is negative across
years, meaning that the higher the land surface temperature, the lower the dengue fever incidence rate.
This contradicts the theory, as these conflicting results are caused by the characteristics of each study
location. However, these conflicting results can be explained by the characteristics of each study
location, such as local adaptation of the vector. Pattern of relationship between temperature and the
Aedes mosquito population in the form of an inverted "U" curve. Temperatures exceeding the optimal
threshold (~30°C) can increase mosquito mortality and reduce their activity [28].

Furthermore, rainfall (Figure 38) also shows a consistently positive median coefficient each year,
meaning that high rainfall influences the increase in dengue fever incidence. Increased rainfall
influences the high rate of mosquito reproduction and dengue fever transmission. Rainfall is one
indicator in assessing exposure to dengue fever. High rainfall affects the life cycle of the Aedes aegypti
mosquito, the primary vector of dengue fever. Rain can create stagnant water in natural and artificial
containers—such as flower pots, used cans, or water reservoirs—which serve as breeding grounds for
mosquitoes [5]. Rainfall is an external factor of climate hazards that interacts with social conditions and
the adaptive capacity of the community, thus determining the level of dengue fever risk [9].

Weak economic conditions limit the ability of individuals and communities to access essential
resources, including health services, clean water, sanitation, adequate housing, disease prevention
information, and economic protections such as insurance or social assistance programs [10]. The
percentage of the poor population (Figure 39) has predominantly a negative coefficient value in each
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observation year. This means that a higher percentage of the poor population will reduce the incidence
of dengue fever. This contradicts the theory, these conflicting results are caused by the characteristics
of each study location, such as the level of dengue fever susceptibility in the population, the
implementation and coverage of vector control measures, and differences in the spatial units of the study
or socioeconomic variables considered [29]. Research suggests that higher poverty status has a negative
effect on dengue transmission [30]. Poor people tend to be reluctant to seek health services when
infected with dengue fever and thus dengue infections are underreported [31]. However, in 2022, the
effect of the percentage of poor people showed a difference, with the regression coefficient having a
positive median value. This means that a higher percentage of poor people will increase the incidence
of dengue fever. This can be caused by various factors, such as a decrease in the coverage of vector
control interventions in poor areas after the COVID-19 pandemic, as well as the high burden on health
services due to COVID-19 which causes uneven distribution of prevention services [32].

Population density (Figure 40) shows a consistently positive median coefficient each year, meaning
that population density began to influence the increase in dengue fever incidence rates. Population
density is an indicator in measuring an area's exposure to dengue fever transmission. This is because
humans function as hosts for the virus, so the more densely populated an area is, the greater the chance
of transmission from one person to another through mosquito bites [33]. Areas with high population
density, generally in urban areas, are areas with a high level of exposure to dengue fever [5]. The
structure of the city influences the incidence of dengue fever, areas with high building density and low
vegetation cover have a higher level of dengue susceptibility [34]. Informal or dense settlements tend
to lack basic infrastructure such as good drainage, closed sanitation systems, and adequate waste
management, thus increasing the possibility of the formation of stagnant water as a breeding ground for
mosquitoes. Population density is directly linked to the likelihood of the population interacting with
dengue vectors [5].

The percentage of households without access to proper sanitation (Figure 41) shows a consistently
positive median coefficient each year, meaning that regencies/cities with poor sanitation have an impact
on increasing the incidence of dengue fever. Poor sanitation indicates proximity to poor water resources
and poor housing quality [35]. Lack of access to basic services, such as proper sanitation allows vectors
to easily find good places to lay eggs in areas with high levels of social vulnerability [14]. Lack of access
to adequate sanitation is a key indicator in assessing a region's sensitivity to vector-borne diseases such
as dengue fever. Poor sanitation reflects structural vulnerabilities inherent in a community's social
conditions, particularly in poor and densely populated areas. Social systems and inequalities in access
to basic infrastructure, such as clean water and sanitation increase a community's sensitivity to disasters
and disease.

Access to adequate health services is a key factor in building community resilience against
waterborne diseases, including dengue fever. The availability of affordable and high-quality healthcare
facilities plays a role in reducing disease fatalities and increasing communities' capacity to adapt to
environmental health risks [5]. The ratio of the number of health facilities (Figure 42) shows a negative
median coefficient across the years. This means that regencies/cities with a higher ratio of health
facilities tend to have lower dengue fever incidence rates. This result is in line with findings Wijayanti
et al. [15] showing that distance to health facilities is an important factor in reporting dengue cases. The
greater the distance, the greater the likelihood of cases going unreported. Therefore, high availability of
health facilities can improve access to medical services and early detection, thereby reducing the risk of
dengue fever spread.

A key aspect of adaptive capacity is education, particularly for women, which significantly
influences household-level decision-making in the context of health. An individual's level of education,
particularly for women, is closely related to their ability to access information, understand disease risks,
and implement effective preventive practices [5]. Education provides the foundation for health literacy,
enabling individuals to assess available information, understand disease symptoms and transmission,
and actively participate in disease prevention and control efforts in their communities. But, the
percentage of the population aged 25 years and over with at least a high school education (Figure 43)

I@@ 0D,

793



|®

shows a positive median coefficient throughout the observation years. In general, a higher percentage
of the population aged 25 years and over with at least a high school education will influence the increase
in the incidence of dengue fever. Similar findings were also reported by Carabali et al. [31], residents
with higher levels of education are more likely to seek health services when infected with dengue fever.
Regions with higher levels of education tend to have better reporting and recording systems for dengue
cases.

3.6.  The influence of climate change and social vulnerability factors on the dengue fever incidence
rate in each regency

Differences in characteristics in each regency/city cause spatial variations in the strength and direction
of influence between variables from climate change factors and social vulnerability on the incidence of
dengue fever. The regression coefficients that influence the incidence of dengue fever, with a positive
direction for each variable in 2019 and 2023 are selected for analysis. In this case, the main focus of the
study is to identify areas with the largest number of significant variables, especially those with a positive
direction, because the more variables that have a significant positive effect on the incidence of dengue
fever indicate a high level of vulnerability to dengue fever in that area. Of the total seven variables
(intercept not included) analyzed, the maximum number of positive significant variables found in a
region was four. Therefore, the grouping of dengue fever intervention priority scale levels was set as
follows: areas with three to four positive significant variables were categorized as high, while areas with
one to two variables were categorized as low. The following is a summary of priority areas for dengue
fever intervention based on the results of local parameter estimation of the GTWR model:

Table 19. Changes in the number of regression parameter with a
statistically significant positive influence by regency/city.

Number of Variables with a
Region Significant Positive Influence
2019 2023

Cianjur Regency 3 3
Tasikmalaya Regency 1 4
Ciamis Regency 1 3
Garut Regency 2 3
Kuningan Regency 0 3
Banjar City 1 3
Tasikmalaya City 1 3
Sukabumi City 3 1
Bandung Regency 0 1
West Bandung Regency 1 0
Bekasi Regency 1 1
Bogor Regency 2 1
Cirebon Regency 0 0
Indramayu Regency 0 1
Karawang Regency 1 0
Majalengka Regency 1 1
Pangandaran Regency 1 2
Purwakarta Regency 2 1
Subang Regency 2 1
Sukabumi Regency 2 1
Sumedang Regency 2 1
Bandung City 0 0
Bekasi City 2 1
Bogor City 2 1
Cimahi City 0 0
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Table 19. Changes in the number of regression parameter with a
statistically significant positive influence by regency/city.

Number of Variables with a

Region Significant Positive Influence
2019 2023
Cirebon City 0 0
Depok City 1 0

Based on table 5, the results in areas have a high number of positive significant variables in 2019 and
remain high in 2023 like Cianjur Regency and areas that in 2019 had a low number of significant
variables but increased significantly in 2023 like Tasikmalaya Regency, Ciamis Regency, Garut
Regency, Kuningan Regency, Banjar City, and Tasikmalaya City should be the primary focus of dengue
control intervention efforts. These areas demonstrate high levels of vulnerability, both consistently and
due to an increase in the number of significant positive variables over the past five years. This indicates
that variables from climate change and social vulnerability factors in these areas further strengthen the
potential for increased dengue incidence. Meanwhile, areas with both years had a low or no number of
positive significant variables can be used as control or comparison areas in policy evaluations, but still
need to be monitored for changes in environmental and social factors.

4. Conclusion

This study explores and analyzes the spatial-temporal distribution of dengue fever incidence rates and
the influence of climate change factors and potential social vulnerabilities in West Java in 2019-2023.
This study revealed that the distribution of dengue fever incidence rates in West Java is heterogeneous
and clustered. In 2019, most regencies/cities in West Java had high dengue fever incidence rates. Dengue
fever incidence rates tended to be clustered in urban areas, such as Bodebek (Bogor, Depok, Bekasi)
and Central Java. Priangan (Bandung, Bandung City, and surrounding areas). However, in 2023, there
was a decrease in the intensity of dengue fever incidence rates in most areas of West Java.

The variables rainfall, population density, percentage of households with inadequate sanitation
access, percentage of population with at least a high school education, and ratio of health facilities show
a positive influence on the incidence rate. Dengue fever occurs in most areas and at most times. In
contrast, land surface temperature and the percentage of poor people showed a negative influence on the
incidence rate of dengue fever in most areas and times.

The GTWR model results can guide the government in developing regional and time-based
policies, prioritizing interventions in dengue-prone areas, and collaborating with the Meteorology,
Climatology, and Geophysics Agency (BMKG) to monitor microclimates and build weather-based early
warning systems. Further research can expand the scope of indicators, such as population mobility,
urbanization levels, land cover, the presence of stagnant water, air humidity, and vector mosquito
density, used to describe social vulnerability factors and climate change, to better capture local variations
in dengue incidence rates.
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