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Abstract. Civil Registration and Vital Statistics (CRVS) systems in archipelagic contexts like 

Indonesia face persistent challenges in location data standardisation due to free-text entries that 

vary in spelling, formatting, and granularity. This study introduces a multi-stage hybrid 

framework that systematically converts these unstructured entries into official administrative 

codes using deterministic matching, fuzzy probabilistic matching, and geocoding. This study 

processed 841,126 birth and death records using Python (Pandas, RapidFuzz, Geopy). 

Cumulatively, all stages achieved a combined match rate of 85.44% for births and 67.12% for 

deaths. The layered pipeline ensured speed, precision, and coverage for real-world CRVS data. 

The findings demonstrate enhanced geographic precision in vital statistics, enabling more 

reliable public health and demographic applications. Future improvements may include 

transformer-based embeddings, active learning for ambiguous records, and uncertainty-aware 

geocoding techniques. This framework establishes a scalable, robust pathway for elevating the 

granularity and reliability of geolocated vital event data. 

Keywords: CRVS standardisation, fuzzy record linkage, geocoding, spatial proximity analysis, 

vital statistics 

1. Introduction 

Accurate and reliable vital statistics are the bedrock of effective public health planning, demographic 

analysis, and evidence-based policymaking worldwide [1]. These statistics, capturing critical life events 

like births and deaths, offer indispensable insights into population dynamics, health trends, and societal 

needs [2][3][4]. However, the quality and usability of vital statistics are intrinsically tied to the precision 

and consistency of the underlying civil registration records. A pervasive challenge in national Civil 

Registration and Vital Statistics (CRVS) systems, particularly relying on open-ended input fields, is the 

inherent variability and ambiguity of location data. This issue is particularly acute in large, diverse 

archipelagic nations like Indonesia, where local nuances in placename recording frequently lead to 

inconsistencies [5]. 

In Indonesia, the standardisation of administrative regions is primarily governed by the Ministry of 

Home Affairs (MOHA), which issues official administrative codes for provinces (e.g., 32 for Jawa 

Barat), regencies/cities (e.g., 3201 for Kabupaten Bogor), districts (e.g., 320129 for Kecamatan 
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Ciomas), and villages/kelurahan (e.g., 3201292006 for Desa Pagelaran). While Statistics Indonesia 

(BPS) also maintains its own Statistical Working Areas for data collection and dissemination, theMOHA 

codes are fundamental for official administrative purposes and vital registration. It is important to note 

that a mapping exists between BPS codes and MOHA administrative codes, indicating an inter-agency 

need for data alignment and consistency.  

Even though MOHA has a standardised code for administrative regions, some variables for vital 

event registration still collect unstructured place of event information[6] for simplicity reasons when 

getting data from citizens. This open-ended data collection method inevitably leads to inconsistencies 

in spelling, format, and nomenclature, creating a significant hurdle for data aggregation and analysis. 

For instance, the same location might be recorded in multiple ways, or a generic name could refer to 

several distinct places across different administrative regions. Such variability directly compromises the 

ability to accurately assign events to standardised administrative boundaries, diminishing the reliability 

of derived vital statistics for geographic-specific planning and reporting.  

Traditional methods for standardising location data often fall short [7][8]. Purely deterministic 

approaches, while computationally efficient and effective for exact string matches, frequently fail to 

accommodate the variability commonly found in human-entered text. Such variability includes 

typographical errors, inconsistent formatting, and alternative spellings, which lead to lower match rates 

and overlooked valid records. Conversely, relying exclusively on external geocoding services, despite 

their advanced algorithms and access to extensive geographic databases, often results in ambiguous or 

imprecise matches. This ambiguity arises due to generic place names, overlapping geographic 

boundaries, and entries with insufficient or unclear information, thereby necessitating additional manual 

effort for disambiguation and verification. These inherent drawbacks in each method highlight the need 

for a hybrid or multi-stage approach that balances speed, accuracy, and robustness when standardising 

diverse real-world location data. 

Recent frameworks have achieved impressive performance in related address-matching tasks. For 

example, the FLAP system (Framework for Linking free-text Addresses to the UPRN database) 

demonstrated an adjusted matching accuracy of 0.992 when linking unstructured UK addresses to UPRN 

records, showing robustness to typographical and formatting variants [6]. Deep learning–driven libraries 

such as DeezyMatch offer flexible, neural-based fuzzy matching and candidate ranking, particularly 

useful for multilingual or noisy datasets like CRVS entries [9]. Meanwhile, classical string similarity 

algorithms (e.g., Cosine, Dice, LCS) remain relevant, especially when enhanced using safety-focused 

classification layers to reduce false positives in sensitive applications [10]. Hybrid methodologies that 

combine textual similarity, geospatial features, and conditional dependencies have also shown improved 

match coverage in practical scenarios [11][12]. 

To bridge the methodological gap in CRVS location standardisation, this paper proposes a multi-

stage hybrid framework that integrates deterministic, probabilistic matching, and geocoding. By 

calculating distances to administrative centroids, this framework aims to resolve ambiguity and enhance 

location assignment accuracy, transforming raw entries into high-quality, standardised data that bolsters 

the foundation of vital statistics for public sector applications. 

2. Research Method 

This section details the proposed multi-stage hybrid framework for standardising unstructured location 

data in civil registration systems (see figure 1). The methodology systematically transforms free text 

location entries into standardised administrative codes, enhancing vital statistics quality. This approach 

integrates deterministic matching, probabilistic-statistical matching, and geocoding using Python 

libraries such as Pandas, RapidFuzz, and Geopy [13], forming a robust pipeline for comprehensive data 

standardisation. 
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Figure 57. Pipeline Overview: From Free Text Data to Hybrid Standardisation 

2.1. Data Source and Preprocessing 

This study uses two data sources: unstructured "place of event" entries from CRVS (births and deaths) 

and a standardised master list of administrative regions. The data used in this study were obtained from 

MOHA records from 2019 to 2024. This data is obtained in a CSV format and handled securely by 

CRVS teams without any personal identifiable information, with the goal of calculating vital statistics 

based on registration events. The "place of event" data for deaths and births are sourced from free-text 

inputs, making it difficult to standardise. In contrast, the master regional data is a standardised dataset 

used for matching with the vital event data.  

Robust text normalisation starts with properly extracting references from unstructured place names. 

The geoparsing field recently consolidated diverse methods (rule-based, gazetteer matching, statistical, 

and hybrid) for pulling location references from free text, as summarised in a comprehensive ACM 

Computing Surveys review [14]. 

2.2. Input Data (Unstructured Data)  

The data used in this study consists of death and birth event data. A total of 841,126 records were 

analysed, comprising 449,440 birth records and 391,686 death records. Each record includes a "place of 

event" field, which can contain location names ranging from the village level to the provincial level, and 

even specific place names like hospitals. 

Given the lack of a standard format for writing the location of an event in this dataset, data cleaning 

is necessary to reduce data variability. In [15], data cleaning of free-text entries was performed by 

converting abbreviations, handling letter case, and removing spaces or characters. This approach was 

also applied to the death and birth vital event data to reduce data variability. 

To improve consistency, comprehensive text normalisation was applied using the Pandas and regular 

expression library in Python. The entire preprocessing workflow was implemented in Python 3.13.5. 

The cleaning pipeline includes: 

• Abbreviation expansion: Using regex patterns, it systematically expanded abbreviations such as 'RS' 

to 'rumah sakit', 'Kab.' to 'Kabupaten', and 'Kec.' to 'Kecamatan'. 

• Standardisation of administrative terms: Custom dictionary was created to strip common 

administrative descriptors (e.g., 'kota', 'kabupaten', 'kecamatan') using string replacement functions. 

• Case and spacing normalisation: All text was converted to lowercase using the str.lower() method, 

and whitespace was removed using str.replace(' ', ''). 

This step aligns with best practices in standardising free-form addresses to enable accurate matching, 

as emphasised in record linkage literature [16]. This was necessary because the data entry for death and 

birth events did not have clear instructions, leading to variations in how locations were written. 

Removing spaces, in particular, helped resolve inconsistencies like "Pangkal Pinang" being written with 

a space in some entries and as "Pangkalpinang" without a space in others. This approach ensured that 

such variations did not affect the data matching process.  
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Master Reference Data (Target Standard) 

The matching process was performed using the master administrative data from MOHA. This dataset 

was selected because the vital event data also originated from the same ministry, making it more relevant 

for matching than the statistical working area data from BPS. The master data consists of four 

administrative levels: province, regency/city, district, and village/urban sub-district. 

To facilitate matching, all four levels were combined into a single field. This allowed for a 

comprehensive matching process where each record was compared against all administrative levels. 

This approach was necessary because the location information in the death and birth vital event data 

could be a province, a regency/city, a district, a village, or even a specific location like a hospital name. 

Similar to the vital event data, the master administrative data was also preprocessed by converting all 

characters to lowercase and removing all spaces to ensure consistency.  

Multi-Stage Hybrid Standardisation Framework 

This framework operates as a sequential steps, where each stage processes the remaining unstructured 

entries from the previous stage, progressively reducing ambiguity and increasing standardisation 

coverage. The entire process was conducted using the Python programming language, with all stages 

executed within a Jupyter Notebook environment. 

Stage 1: Deterministic Matching 

This initial stage involves direct string comparisons between cleaned CRVS entries and the master 

reference list. Deterministic linkage provides quick, high-confidence matches but fails when entries 

contain typos or non-standard formats, a well-recognised limitation in classical linkage workflows [17]. 

This process was implemented using the Pandas library in Python. Despite its speed and simplicity, 

this method has limitations. This stage is unable to detect data with typographical errors, preventing 

them from being matched with the master administrative data. Given that the vital event data for deaths 

and births is a free-text input, there is a low probability that the entries are free from typos. Additionally, 

some entries may not be official administrative names but rather local place names, such as hospitals or 

unofficial neighbourhood names not registered with the MOHA’s administrative names. 

Stage 2: Probabilistic Matching 

Remaining unmatched records are paired probabilistically using the RapidFuzz library, specifically 

leveraging the WRatio function. RapidFuzz was selected due to its superior performance, processing 

about 40% faster and using memory more efficiently than alternatives such as FuzzyWuzzy, Difflib, 

Levenshtein, and Jellyfish, especially important for large-scale, multilingual CRVS data [15]. This stage 

is designed to address typographical errors that occurred during the data entry process. To ensure a high 

degree of similarity and maintain the assumption of only minor typos, a threshold of 95% was 

established. This high threshold reduces the risk of false positives by allowing matches only when strings 

are nearly identical, making it suitable for tasks requiring high precision [18]. This stage employs 

blocking strategies to reduce the computational burden of pairwise comparisons, aligning with 

established practices of scalable record linkage [19]. 

To formalise the scoring mechanism, this study defines a normalised ratio and then applies a 

composite scoring formula that balances different fuzzy matching strategies. 

 

      ratio = (1 − 
Levenshtein Distance

max(|s1| ,{s2|)
) x 100    (1) 

 
WRatio(s1, s2) = max(ratio(s1, s2),0.95 × token_sort_ratio(s1, s2),0.9 × token_set_ratio(s1, s2)) 
              (2) 

Stage 3: Geocoding 
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For records still unresolved by text-based matching, this study employs geocoding. Geocoding is the 

process of translating a place name or building into geographic coordinates. The output of this process 

is a set of coordinates, which are then overlaid onto a map of Indonesia's administrative regions to 

determine the corresponding regional name (see figure 2). 

This study used the Geopy library with data from OpenStreetMap for the geocoding process. The 

vital event data was fed into the library, which returned a single coordinate point if the location was 

found in the OpenStreetMap database. If a location was not found, no coordinates were returned. 

The resulting coordinates were then overlaid onto an Indonesia GeoJSON map using Python. This 

method allowed for the retrieval of the administrative region name based on where the point fell within 

a specific area. The region extracted was the village/urban sub-district level, which facilitates subsequent 

statistical data creation as it can be easily aggregated to higher administrative levels. 

High-volume implementations using hierarchical geocoding frameworks such as TIGER/Line and 

CASS-style pipelines demonstrate the feasibility of geocoding billions of addresses at scale while 

maintaining precision [20][21]. Additionally, emerging model-driven frameworks like ELECTRo-map 

offer an end-to-end probabilistic approach, providing uncertainty-aware geocoding by directly 

estimating geographic coordinates from text while leveraging contextual cues [22]. Nonetheless, 

geocoding introduces potential errors when processing ambiguous inputs, such as generic facility names 

(e.g., "hospital") or entries containing only neighbourhood-level codes like RT/RW, which may result 

in incorrect spatial assignments [23]. 

 

 

Figure 58. Illustration of Geocoding Steps 

3. Result and Discussion 

The multi-stage framework processed 841,126 vital event records through three sequential stages: 

deterministic matching, probabilistic matching, and geocoding. Each stage was designed to address 

progressively more complex data quality issues, from exact matches to typographical variations and 

finally to location ambiguities requiring spatial resolution. The following subsections present the 

performance of each stage in detail. 

Table 1 presents the results of the initial deterministic matching stage, where 29.09% of birth records 

(130,720 out of 449,440) and 11.83% of death records (46,332 out of 391,686) achieved exact matches 

with the master administrative data. 
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Table 29. The result of deterministic matching  

Event Type Match Not Match Total Match Percentage 

Birth 130,720 318,720 449,440 29.09% 

Death 46,332 345,354 391,686 11.83% 

 

This stage efficiently solved several common data formatting problems: 

• Spacing Issues: Cases like the entry "Banjar Masin" in the death data were successfully matched with 

"BANJARMASIN" in the master regional data. This highlights the effectiveness of the initial data 

cleaning process where all spaces and special characters were removed before matching. 

• Case Differences: The issue of case sensitivity was resolved by converting all text to lowercase, 

allowing "Salur Lasengalu" to be matched with "SALUR LASENGALU." This is an important step 

to ensure consistency and prevent matching failures due to case differences alone. 

• Geographical Name Variations: The matching was successful for entries that listed a place name 

along with its administrative level (e.g., "Kecamatan Ciomas"), which directly matched similar 

entries in the master data. 

Despite its success, the deterministic approach has clear limitations. This stage cannot resolve issues 

like typographical errors or non-standard naming variations. For example, if "Banjar Masin" was written 

as "Banjar Masinng," the deterministic method would fail. These failures underscore the necessity of 

the subsequent probabilistic matching and geocoding stages to handle more complex and varied entries. 

The probabilistic matching stage successfully matched an additional 47.89% of the previously 

unmatched birth records (152,634 out of 318,720) and 22.55% of death records (77,869 out of 345,354) 

using a fuzzy string similarity threshold of 95% (see table 2). This stage was particularly effective in 

correcting minor spelling errors, typically involving one or two letters. Despite these corrections, some 

errors remained due to regional name similarities, underscoring the utility of maintaining a high 

similarity threshold to minimise false positives. 

Some examples of corrected spelling errors at this stage include "TOULIAN OKI," which was 

successfully matched to the administrative name "TOULIANG OKI," and "PALAWARUKKA," which 

was matched to "PALLAWA RUKKA." Most of the successful matches were able to correct errors of 

one or two letters. 

However, because some regional names are similar, matching errors still occurred, such as 

"PAICTAN" being matched to "PAITAN" and "TUGUNIMA" being matched to "TUGU". These cases 

remain a problem in the probabilistic process, so using a high threshold can minimise these errors. 

  

Table 30. The result of probabilistic matching 

Event Type Match Not Match Total Match Percentage 

Birth 152,634 166,086 318,720 47.89% 

Death 77,869 267,485 345,354 22.55% 

 

Cumulatively, the first two matching stages (deterministic and probabilistic) attained a combined 

match rate of 63.05% for birth records and 31.71% for death records relative to the original dataset as 

written in Table 32. The remaining unmatched records were processed through geocoding, resulting in 

successful location assignments for 60.60% of the remaining birth records and 51.85% of the remaining 

death records (see table 3). Unlike deterministic and probabilistic matching, which rely solely on the 

input records of births or deaths, geocoding utilises geospatial reference data (in this case, from 

OpenStreetMap) to pinpoint the exact geographic location of each event. The output of this stage is a 

pair of latitude and longitude coordinates corresponding to the place of occurrence.  
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Table 31. Geocoding result 

Event Type Match Not Match Total Match Percentage 

Birth 100,651 65,435 166,086 60.60% 

Death 138,702 128,783 267,485 51.85% 

  

The geocoding process successfully mapped several types of ambiguous cases. First, it was able to 

map building names, such as hospitals, to a coordinate point, which was then assigned to a specific 

administrative region. Second, it mapped place names that are not officially recorded in the master data. 

For example, "RS.AR-ROYYAN" could be matched to "KAB. OGAN ILIR" and "Tana Wawo" was 

matched to "KAB. SIKKA." However, this method also has its drawbacks: 

• Vague or Generic Locations: For death/birth event names that only contain an RT or RW number 

without any other regional information, the matching is likely to be incorrect because there are many 

similar RT and RW numbers across Indonesia. Similarly, generic information like "RSUD" (General 

Regional Hospital) cannot be mapped and will result in an incorrect coordinate point. 

• Foreign Locations: A location name from another country also cannot be matched in this case, even 

if the geocoding service provides an accurate coordinate point. This is because the framework is 

designed to match against Indonesian administrative boundaries. 

• Invalid Entries: Lastly, invalid death/birth event names that only contain numbers, dates, or 

meaningless letters cannot be mapped. 
 

Table 32. Cumulative percentage of each stage 

Event 

Type 

Match Percentage 

(Deterministic) 

Match Percentage 

(Deterministic + Probabilistic) 

Match Percentage 

(Deterministic + Probabilistic + 

Geocoding) 

Birth 29.09% 63.05% 85.44% 

Death 11.83% 31.71% 67.12% 

4. Conclusion  

This study proposes a multi-stage hybrid framework that effectively standardises unstructured location 

data in Civil Registration and Vital Statistics (CRVS) systems by integrating deterministic matching, 

probabilistic fuzzy matching, geocoding, and spatial proximity analysis. The framework demonstrated 

significant improvements in match coverage, with a combined matching rate of 85.44% for birth events 

and 67.12% for death events, as shown in Table 32. These results reflect enhanced accuracy and 

geographic specificity of vital statistics crucial for public health planning and demographic analyses. 

This approach balances computational speed and precision by addressing straightforward cases 

through rule-based string matching and handling more ambiguous records through similarity scoring 

and spatial techniques. The layered framework mitigates challenges inherent to free-text entries such as 

spelling variation, format inconsistency, and ambiguous place names that often plague CRVS datasets, 

especially in Indonesia’s complex archipelagic setting.  

While geocoding further resolves ambiguous location assignments, limitations remain, including 

mapping of generic or incomplete location entries and foreign place names. Future work could 

investigate integrating transformer-based embedding models for semantic matching, active learning to 

optimise disambiguation of challenging records, and uncertainty-aware geocoding methodologies to 

further improve robustness. Such advancements hold promise for producing high-quality, geolocated 
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vital event data capable of supporting evidence-based policy and enhancing the utility of national CRVS 

systems.   
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