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Abstract. Civil Registration and Vital Statistics (CRVS) systems in archipelagic contexts like
Indonesia face persistent challenges in location data standardisation due to free-text entries that
vary in spelling, formatting, and granularity. This study introduces a multi-stage hybrid
framework that systematically converts these unstructured entries into official administrative
codes using deterministic matching, fuzzy probabilistic matching, and geocoding. This study
processed 841,126 birth and death records using Python (Pandas, RapidFuzz, Geopy).
Cumulatively, all stages achieved a combined match rate of 85.44% for births and 67.12% for
deaths. The layered pipeline ensured speed, precision, and coverage for real-world CRVS data.
The findings demonstrate enhanced geographic precision in vital statistics, enabling more
reliable public health and demographic applications. Future improvements may include
transformer-based embeddings, active learning for ambiguous records, and uncertainty-aware
geocoding techniques. This framework establishes a scalable, robust pathway for elevating the
granularity and reliability of geolocated vital event data.
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1. Introduction
Accurate and reliable vital statistics are the bedrock of effective public health planning, demographic
analysis, and evidence-based policymaking worldwide [1]. These statistics, capturing critical life events
like births and deaths, offer indispensable insights into population dynamics, health trends, and societal
needs [2][3][4]. However, the quality and usability of vital statistics are intrinsically tied to the precision
and consistency of the underlying civil registration records. A pervasive challenge in national Civil
Registration and Vital Statistics (CRVS) systems, particularly relying on open-ended input fields, is the
inherent variability and ambiguity of location data. This issue is particularly acute in large, diverse
archipelagic nations like Indonesia, where local nuances in placename recording frequently lead to
inconsistencies [5].

In Indonesia, the standardisation of administrative regions is primarily governed by the Ministry of
Home Affairs (MOHA), which issues official administrative codes for provinces (e.g., 32 for Jawa
Barat), regencies/cities (e.g., 3201 for Kabupaten Bogor), districts (e.g., 320129 for Kecamatan
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Ciomas), and villages/kelurahan (e.g., 3201292006 for Desa Pagelaran). While Statistics Indonesia
(BPS) also maintains its own Statistical Working Areas for data collection and dissemination, theMOHA
codes are fundamental for official administrative purposes and vital registration. It is important to note
that a mapping exists between BPS codes and MOHA administrative codes, indicating an inter-agency
need for data alignment and consistency.

Even though MOHA has a standardised code for administrative regions, some variables for vital
event registration still collect unstructured place of event information[6] for simplicity reasons when
getting data from citizens. This open-ended data collection method inevitably leads to inconsistencies
in spelling, format, and nomenclature, creating a significant hurdle for data aggregation and analysis.
For instance, the same location might be recorded in multiple ways, or a generic name could refer to
several distinct places across different administrative regions. Such variability directly compromises the
ability to accurately assign events to standardised administrative boundaries, diminishing the reliability
of derived vital statistics for geographic-specific planning and reporting.

Traditional methods for standardising location data often fall short [7][8]. Purely deterministic
approaches, while computationally efficient and effective for exact string matches, frequently fail to
accommodate the variability commonly found in human-entered text. Such variability includes
typographical errors, inconsistent formatting, and alternative spellings, which lead to lower match rates
and overlooked valid records. Conversely, relying exclusively on external geocoding services, despite
their advanced algorithms and access to extensive geographic databases, often results in ambiguous or
imprecise matches. This ambiguity arises due to generic place names, overlapping geographic
boundaries, and entries with insufficient or unclear information, thereby necessitating additional manual
effort for disambiguation and verification. These inherent drawbacks in each method highlight the need
for a hybrid or multi-stage approach that balances speed, accuracy, and robustness when standardising
diverse real-world location data.

Recent frameworks have achieved impressive performance in related address-matching tasks. For
example, the FLAP system (Framework for Linking free-text Addresses to the UPRN database)
demonstrated an adjusted matching accuracy of 0.992 when linking unstructured UK addresses to UPRN
records, showing robustness to typographical and formatting variants [6]. Deep learning—driven libraries
such as DeezyMatch offer flexible, neural-based fuzzy matching and candidate ranking, particularly
useful for multilingual or noisy datasets like CRVS entries [9]. Meanwhile, classical string similarity
algorithms (e.g., Cosine, Dice, LCS) remain relevant, especially when enhanced using safety-focused
classification layers to reduce false positives in sensitive applications [10]. Hybrid methodologies that
combine textual similarity, geospatial features, and conditional dependencies have also shown improved
match coverage in practical scenarios [11][12].

To bridge the methodological gap in CRVS location standardisation, this paper proposes a multi-
stage hybrid framework that integrates deterministic, probabilistic matching, and geocoding. By
calculating distances to administrative centroids, this framework aims to resolve ambiguity and enhance
location assignment accuracy, transforming raw entries into high-quality, standardised data that bolsters
the foundation of vital statistics for public sector applications.

2. Research Method

This section details the proposed multi-stage hybrid framework for standardising unstructured location
data in civil registration systems (see figure 1). The methodology systematically transforms free text
location entries into standardised administrative codes, enhancing vital statistics quality. This approach
integrates deterministic matching, probabilistic-statistical matching, and geocoding using Python
libraries such as Pandas, RapidFuzz, and Geopy [13], forming a robust pipeline for comprehensive data
standardisation.
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Figure 57. Pipeline Overview: From Free Text Data to Hybrid Standardisation
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2.1. Data Source and Preprocessing

This study uses two data sources: unstructured "place of event" entries from CRVS (births and deaths)
and a standardised master list of administrative regions. The data used in this study were obtained from
MOHA records from 2019 to 2024. This data is obtained in a CSV format and handled securely by
CRVS teams without any personal identifiable information, with the goal of calculating vital statistics
based on registration events. The "place of event™ data for deaths and births are sourced from free-text
inputs, making it difficult to standardise. In contrast, the master regional data is a standardised dataset
used for matching with the vital event data.

Robust text normalisation starts with properly extracting references from unstructured place names.
The geoparsing field recently consolidated diverse methods (rule-based, gazetteer matching, statistical,
and hybrid) for pulling location references from free text, as summarised in a comprehensive ACM
Computing Surveys review [14].

2.2. Input Data (Unstructured Data)

The data used in this study consists of death and birth event data. A total of 841,126 records were
analysed, comprising 449,440 birth records and 391,686 death records. Each record includes a "place of
event" field, which can contain location names ranging from the village level to the provincial level, and
even specific place names like hospitals.

Given the lack of a standard format for writing the location of an event in this dataset, data cleaning
is necessary to reduce data variability. In [15], data cleaning of free-text entries was performed by
converting abbreviations, handling letter case, and removing spaces or characters. This approach was
also applied to the death and birth vital event data to reduce data variability.

To improve consistency, comprehensive text normalisation was applied using the Pandas and regular
expression library in Python. The entire preprocessing workflow was implemented in Python 3.13.5.
The cleaning pipeline includes:

¢ Abbreviation expansion: Using regex patterns, it systematically expanded abbreviations such as 'RS'
to 'rumah sakit', 'Kab." to 'Kabupaten', and 'Kec.' to '‘Kecamatan'.

o Standardisation of administrative terms: Custom dictionary was created to strip common
administrative descriptors (e.g., 'kota', 'kabupaten', 'kecamatan’) using string replacement functions.

¢ Case and spacing normalisation: All text was converted to lowercase using the str.lower() method,
and whitespace was removed using str.replace(’ ', ").

This step aligns with best practices in standardising free-form addresses to enable accurate matching,
as emphasised in record linkage literature [16]. This was necessary because the data entry for death and
birth events did not have clear instructions, leading to variations in how locations were written.
Removing spaces, in particular, helped resolve inconsistencies like "Pangkal Pinang™ being written with
a space in some entries and as "Pangkalpinang" without a space in others. This approach ensured that
such variations did not affect the data matching process.
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Master Reference Data (Target Standard)

The matching process was performed using the master administrative data from MOHA. This dataset
was selected because the vital event data also originated from the same ministry, making it more relevant
for matching than the statistical working area data from BPS. The master data consists of four
administrative levels: province, regency/city, district, and village/urban sub-district.

To facilitate matching, all four levels were combined into a single field. This allowed for a
comprehensive matching process where each record was compared against all administrative levels.
This approach was necessary because the location information in the death and birth vital event data
could be a province, a regency/city, a district, a village, or even a specific location like a hospital name.
Similar to the vital event data, the master administrative data was also preprocessed by converting all
characters to lowercase and removing all spaces to ensure consistency.

Multi-Stage Hybrid Standardisation Framework

This framework operates as a sequential steps, where each stage processes the remaining unstructured
entries from the previous stage, progressively reducing ambiguity and increasing standardisation
coverage. The entire process was conducted using the Python programming language, with all stages
executed within a Jupyter Notebook environment.

Stage 1: Deterministic Matching

This initial stage involves direct string comparisons between cleaned CRVS entries and the master
reference list. Deterministic linkage provides quick, high-confidence matches but fails when entries
contain typos or non-standard formats, a well-recognised limitation in classical linkage workflows [17].

This process was implemented using the Pandas library in Python. Despite its speed and simplicity,
this method has limitations. This stage is unable to detect data with typographical errors, preventing
them from being matched with the master administrative data. Given that the vital event data for deaths
and births is a free-text input, there is a low probability that the entries are free from typos. Additionally,
some entries may not be official administrative names but rather local place names, such as hospitals or
unofficial neighbourhood names not registered with the MOHA’s administrative names.

Stage 2: Probabilistic Matching

Remaining unmatched records are paired probabilistically using the RapidFuzz library, specifically
leveraging the WRatio function. RapidFuzz was selected due to its superior performance, processing
about 40% faster and using memory more efficiently than alternatives such as FuzzyWuzzy, Difflib,
Levenshtein, and Jellyfish, especially important for large-scale, multilingual CRVS data [15]. This stage
is designed to address typographical errors that occurred during the data entry process. To ensure a high
degree of similarity and maintain the assumption of only minor typos, a threshold of 95% was
established. This high threshold reduces the risk of false positives by allowing matches only when strings
are nearly identical, making it suitable for tasks requiring high precision [18]. This stage employs
blocking strategies to reduce the computational burden of pairwise comparisons, aligning with
established practices of scalable record linkage [19].

To formalise the scoring mechanism, this study defines a normalised ratio and then applies a
composite scoring formula that balances different fuzzy matching strategies.

L _ Levenshtein Distance
ratio = (1 (1l G2 )x 100 @

WRatio(s1,s2) = max(ratio(s1,s2),0.95 X token_sort_ratio(s1,s2),0.9 X token_set_ratio(s1,s2))

)
Stage 3: Geocoding
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For records still unresolved by text-based matching, this study employs geocoding. Geocoding is the
process of translating a place name or building into geographic coordinates. The output of this process
is a set of coordinates, which are then overlaid onto a map of Indonesia's administrative regions to
determine the corresponding regional name (see figure 2).

This study used the Geopy library with data from OpenStreetMap for the geocoding process. The
vital event data was fed into the library, which returned a single coordinate point if the location was
found in the OpenStreetMap database. If a location was not found, no coordinates were returned.

The resulting coordinates were then overlaid onto an Indonesia GeoJSON map using Python. This
method allowed for the retrieval of the administrative region name based on where the point fell within
a specific area. The region extracted was the village/urban sub-district level, which facilitates subsequent
statistical data creation as it can be easily aggregated to higher administrative levels.

High-volume implementations using hierarchical geocoding frameworks such as TIGER/Line and
CASS-style pipelines demonstrate the feasibility of geocoding billions of addresses at scale while
maintaining precision [20][21]. Additionally, emerging model-driven frameworks like ELECTRo-map
offer an end-to-end probabilistic approach, providing uncertainty-aware geocoding by directly
estimating geographic coordinates from text while leveraging contextual cues [22]. Nonetheless,
geocoding introduces potential errors when processing ambiguous inputs, such as generic facility names
(e.g., "hospital™) or entries containing only neighbourhood-level codes like RT/RW, which may result
in incorrect spatial assignments [23].

Coordinate
(;E"QF)yr Points
Library
A Python client for U:‘;g(s)?cll‘fd Overla‘id‘onto amap
multiple geocoding’ + Data from of Stausucgl Working
yveb services, making OpenStreetMap by Areas (Wilkerstat)
it easy to convert text-based
place narTes into matching
geographic
coordinates and vice Administrative region
versa name and code

Figure 58. Illustration of Geocoding Steps

3. Result and Discussion
The multi-stage framework processed 841,126 vital event records through three sequential stages:
deterministic matching, probabilistic matching, and geocoding. Each stage was designed to address
progressively more complex data quality issues, from exact matches to typographical variations and
finally to location ambiguities requiring spatial resolution. The following subsections present the
performance of each stage in detail.

Table 1 presents the results of the initial deterministic matching stage, where 29.09% of birth records
(130,720 out of 449,440) and 11.83% of death records (46,332 out of 391,686) achieved exact matches
with the master administrative data.
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Table 29. The result of deterministic matching

Event Type Match Not Match Total Match Percentage
Birth 130,720 318,720 449,440 29.09%
Death 46,332 345,354 391,686 11.83%

This stage efficiently solved several common data formatting problems:

e Spacing Issues: Cases like the entry "Banjar Masin™ in the death data were successfully matched with
"BANJARMASIN" in the master regional data. This highlights the effectiveness of the initial data
cleaning process where all spaces and special characters were removed before matching.

o Case Differences: The issue of case sensitivity was resolved by converting all text to lowercase,
allowing "Salur Lasengalu™ to be matched with "SALUR LASENGALU." This is an important step
to ensure consistency and prevent matching failures due to case differences alone.

e Geographical Name Variations: The matching was successful for entries that listed a place name
along with its administrative level (e.g., "Kecamatan Ciomas"), which directly matched similar
entries in the master data.

Despite its success, the deterministic approach has clear limitations. This stage cannot resolve issues
like typographical errors or non-standard naming variations. For example, if "Banjar Masin™ was written
as "Banjar Masinng," the deterministic method would fail. These failures underscore the necessity of
the subsequent probabilistic matching and geocoding stages to handle more complex and varied entries.

The probabilistic matching stage successfully matched an additional 47.89% of the previously
unmatched birth records (152,634 out of 318,720) and 22.55% of death records (77,869 out of 345,354)
using a fuzzy string similarity threshold of 95% (see table 2). This stage was particularly effective in
correcting minor spelling errors, typically involving one or two letters. Despite these corrections, some
errors remained due to regional name similarities, underscoring the utility of maintaining a high
similarity threshold to minimise false positives.

Some examples of corrected spelling errors at this stage include "TOULIAN OKI," which was
successfully matched to the administrative name "TOULIANG OKI," and "PALAWARUKKA," which
was matched to "PALLAWA RUKKA." Most of the successful matches were able to correct errors of
one or two letters.

However, because some regional names are similar, matching errors still occurred, such as
"PAICTAN" being matched to "PAITAN" and "TUGUNIMA" being matched to "TUGU". These cases
remain a problem in the probabilistic process, so using a high threshold can minimise these errors.

Table 30. The result of probabilistic matching

Event Type Match Not Match Total Match Percentage
Birth 152,634 166,086 318,720 47.89%
Death 77,869 267,485 345,354 22.55%

Cumulatively, the first two matching stages (deterministic and probabilistic) attained a combined
match rate of 63.05% for birth records and 31.71% for death records relative to the original dataset as
written in Table 32. The remaining unmatched records were processed through geocoding, resulting in
successful location assignments for 60.60% of the remaining birth records and 51.85% of the remaining
death records (see table 3). Unlike deterministic and probabilistic matching, which rely solely on the
input records of births or deaths, geocoding utilises geospatial reference data (in this case, from
OpenStreetMap) to pinpoint the exact geographic location of each event. The output of this stage is a
pair of latitude and longitude coordinates corresponding to the place of occurrence.
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Table 31. Geocoding result

Event Type Match Not Match Total Match Percentage
Birth 100,651 65,435 166,086 60.60%
Death 138,702 128,783 267,485 51.85%

The geocoding process successfully mapped several types of ambiguous cases. First, it was able to
map building names, such as hospitals, to a coordinate point, which was then assigned to a specific
administrative region. Second, it mapped place names that are not officially recorded in the master data.
For example, "RS.AR-ROYYAN" could be matched to "KAB. OGAN ILIR" and "Tana Wawao" was
matched to "KAB. SIKKA." However, this method also has its drawbacks:

e Vague or Generic Locations: For death/birth event names that only contain an RT or RW number
without any other regional information, the matching is likely to be incorrect because there are many
similar RT and RW numbers across Indonesia. Similarly, generic information like "RSUD" (General
Regional Hospital) cannot be mapped and will result in an incorrect coordinate point.

e Foreign Locations: A location name from another country also cannot be matched in this case, even
if the geocoding service provides an accurate coordinate point. This is because the framework is
designed to match against Indonesian administrative boundaries.

e Invalid Entries: Lastly, invalid death/birth event names that only contain numbers, dates, or
meaningless letters cannot be mapped.

Table 32. Cumulative percentage of each stage

Match Percentage

Event Match Percentage Match Percentage S i
Type (Deterministic) (Deterministic + Probabilistic) (Determmés;lcc):cg dF;:](;k;ab'“St'C *
Birth 29.09% 63.05% 85.44%

Death 11.83% 31.71% 67.12%

4. Conclusion

This study proposes a multi-stage hybrid framework that effectively standardises unstructured location
data in Civil Registration and Vital Statistics (CRVS) systems by integrating deterministic matching,
probabilistic fuzzy matching, geocoding, and spatial proximity analysis. The framework demonstrated
significant improvements in match coverage, with a combined matching rate of 85.44% for birth events
and 67.12% for death events, as shown in Table 32. These results reflect enhanced accuracy and
geographic specificity of vital statistics crucial for public health planning and demographic analyses.

This approach balances computational speed and precision by addressing straightforward cases
through rule-based string matching and handling more ambiguous records through similarity scoring
and spatial techniques. The layered framework mitigates challenges inherent to free-text entries such as
spelling variation, format inconsistency, and ambiguous place names that often plague CRVS datasets,
especially in Indonesia’s complex archipelagic setting.

While geocoding further resolves ambiguous location assignments, limitations remain, including
mapping of generic or incomplete location entries and foreign place names. Future work could
investigate integrating transformer-based embedding models for semantic matching, active learning to
optimise disambiguation of challenging records, and uncertainty-aware geocoding methodologies to
further improve robustness. Such advancements hold promise for producing high-quality, geolocated
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vital event data capable of supporting evidence-based policy and enhancing the utility of national CRVS
systems.
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