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Abstract. This study examines the spatio-temporal patterns of agricultural drought in
Indramayu Regency, Indonesia, using the Normalized Difference Drought Index (NDDI)
derived from Landsat imagery between 2015 and 2024. The analysis employed spatial
autocorrelation techniques, including Global Moran’s 1T and Local Indicators of Spatial
Association (LISA), to identify spatial clustering and persistence of drought conditions. The
results show consistent spatial vulnerability, with the southern region forming stable High-High
drought clusters across multiple years, while the northern region remains dominated by Low-
Low clusters. These findings indicate that drought distribution in Indramayu demonstrates
strong spatial persistence and temporal continuity, reflecting long-term environmental and land-
use characteristics. A supporting correlation analysis between NDDI and rice productivity (p =
0.164; p-value = 0.651) revealed no significant relationship, suggesting that effective irrigation
systems have mitigated the impact of meteorological drought on agricultural output. Overall,
the study highlights the need for location-specific drought management in spatially vulnerable
southern areas to enhance agricultural resilience and regional food security.
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1. Introduction

Increased frequency, duration, and intensity of drought in various regions have become one of the most
significant climate challenges facing the 21st century. According to the World Meteorological
Organization (WMO), global warming is currently estimated to be between 1,34 and 1,41 °C compared
to the 19th and 20th centuries [1]. Global temperature records were set from 2023 to 2024, mainly due
to the continuous increase in greenhouse gas emissions, accompanied by the transition from La Nifia to
El Nifio [2]. Meanwhile, the drought in Indonesia is caused by land use adaptation, suboptimal irrigation
systems, and El Nifio effects [3]. These then became factors affecting climate dynamics in Indonesia.
According to BMKG data 2025, 2023-2024 dry seasons caused by EI Nifio have resulted in a 50-90%
decrease in rainfall in various regions, especially during the 2023 dry season, dry reservoirs and water
sources, an increase in hotspots in several regions, and disruption to planting and a decline in food
production. In 2025, Indonesia is predicted to experience its peak drought in August [4]. However, the
duration of the dry season in 2025 is predicted to be shorter than usual.
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This drought phenomenon is linked to climate change [5]. Climate change occurs due to long-term
shifts in average weather patterns, caused mainly by human activities. The burning of fossil fuels is the
primary source of greenhouse gas (GHG) emissions, such as carbon dioxide (CO-), methane (CH4), and
nitrous oxide (N20). These gases accumulate in the atmosphere and cause the greenhouse effect, which
increases the Earth's average temperature. This rise in temperature has resulted in various adverse
consequences, including melting ice in the polar regions, rising sea levels, extreme climate patterns,
and damaging ecosystems that threaten biodiversity [6].

Advances in remote sensing technology have opened up enormous opportunities for sustainable
drought monitoring, especially in the agricultural sector, which is highly vulnerable to climate change.
Satellite imagery such as Landsat is instrumental because it provides long-term data with medium
spatial resolution that enables comprehensive analysis of changes in vegetation and soil moisture [7].
For example, research in Subang and Karawang shows that the Landsat-based Vegetation Health Index
(VHI) can detect significant declines in vegetation health due to drought [8]. This satellite image-based
approach allows for large-scale monitoring. It is more efficient than conventional methods such as
manual rainfall measurement, field observation, or farmer reports, making it particularly relevant for
regions such as the Indramayu Regency, which has complex seasonal patterns and rainfall.

One method that can be used in satellite-based drought monitoring is the Normalized Difference
Drought Index (NDDI) [9] [10] [11]. NDDI combines two primary indices, NDVI and NDWI, which
reflect vegetation and moisture conditions, making it a more holistic indicator for detecting drought
symptoms [12]. NDDI provides more accurate information about drought dynamics because it can
simultaneously capture changes in land cover and water availability. Therefore, this approach is
important in routine monitoring and spatial-temporal mitigation of drought impacts. A spatial-temporal
approach is used to comprehensively understand the relationship between drought variables and
environmental factors in space and time to support this analysis. This approach has proven effective in
identifying long-term drought patterns and their impact on agricultural yields, as demonstrated by

Rahman et al. [13] analyzed drought impacts in Punjab, Pakistan (2001-2020) using MODIS-
derived indices (VCI, TCI, VHI) combined with crop yield residuals, finding severe droughts in 2002
and 2008 that reduced yields by 39% in rice, 34% in sugarcane, and 25% in wheat; regression analysis
showed VHI best predicted gram yields (R2 = 0.49), while VCI was strongest for sugarcane (R2 = 0.56)
and rice (R = 0.29). Their resilience analysis classified gram, sugarcane, and maize as highly non-
resilient, wheat and rice as moderately non-resilient, and barley and cotton as more resilient [13].
However, Rahman’s study was limited to MODIS coarse-resolution data and retrospective analysis
without forward-looking projections. Similarly, Sholihah et al. (2016) assessed agricultural drought in
Karawang and Subang using Landsat-based VHI but only for selected years (2000, 2005, 2010, and
2015), providing limited temporal coverage and no predictive insights [14].

To overcome these limitations, this study applies the Landsat-based NDDI approach in Indramayu
Regency for 2015-2024 and employs simple linear regression to project drought conditions for 2025
and 2030. This approach is expected to provide a more comprehensive perspective on agricultural
drought dynamics and support regional climate adaptation planning in agriculture. This study was
conducted to analyze drought in agricultural land in Indramayu Regency from 2015 to 2024 using
Landsat data and the NDDI approach [15]. The information generated is expected not only to describe
historical conditions but also to be used to support medium-term projections until 2030. This is
important for regional policy planning in facing the challenges of climate change while contributing to
the achievement of the Sustainable Development Goals (SDGs), particularly in the aspects of food
security (SDG 2) and action on climate change (SDG 13) [16]. This study provides a strategic
foundation for developing region-based climate adaptation programs and priority sectors.
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Previous research on drought analysis in Indonesian agricultural areas using the NDDI approach has
been conducted. However, most of it has focused on a limited period and has not included long-term
projections. Long-term projections are crucial for anticipating future droughts over multiple years,
enabling proactive measures to reduce crop losses and manage water efficiently. Based on these
projections, policies can include adjusting planting schedules, promoting drought-resistant crops,
improving irrigation and water storage, establishing early warning systems, and supporting long-term
climate adaptation programs. This study aims to fill this gap by analyzing the dynamics of agricultural
drought in Indramayu Regency from 2015 to 2024 using the NDDI approach and utilizing simple linear
regression analysis to forecast drought in 2025. This approach is expected to provide a more
comprehensive overview and support more effective climate change adaptation planning at the regional
level, while also considering how agricultural drought in one area can be related to surrounding regions;
using a spatial model allows the study to capture these inter-regional connections and improve the
accuracy of drought monitoring and prediction.

2. Research Method

The selection of the study area is a crucial first step, as the physical and socio-economic characteristics
of a region strongly influence the dynamics of drought under investigation. Accordingly, this research
begins with a detailed description of the study area, followed by a comprehensive explanation of the
data sources used, and concludes by outlining the analytical methods applied.

2.1. Study area

This research is located in Indramayu Regency, West Java, which is widely recognized as one of the
main rice barns in Indonesia in figure 1. Most of the Indramayu area is agricultural land, primarily
technical and non-technical irrigated rice fields, mainly supporting the community's livelihood. The
contribution of the agricultural sector, especially rice, makes this area strategic in supporting national
food security. With an area dominated by productive rice fields, Indramayu is the center of West Java's
rice production [16].

However, Indramayu's agro-climatic conditions are in the coastal area, making it highly vulnerable
to seasonal drought. The study shows that drought in this region can occur almost yearly, especially
during the long dry period. Severe to extreme drought generally lasts from April to November, with the
highest intensity in September, reaching more than 80% of the affected area [17]. The impact of this
drought is significant as it directly affects the availability of irrigation water and rice production. With
the dominance of the agricultural sector and its vulnerability to drought, Indramayu is a clear example
of a productive agricultural region that faces significant challenges in maintaining the food system's
sustainability. Therefore, studies on drought in this area are important to support mitigation and
adaptation strategies to climate variability.
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Figure 1. Study area.

2.2. Data

This study uses three primary data sets to project agricultural drought in Indramayu Regency, they are
Landsat 8/9 imagery, administrative data, and agricultural productivity data. The table below explains
the three data types and their sources and uses. This combination of remote sensing data and statistical
data is used for spatial and temporal analysis of drought conditions in the region.

Table 1. Research data.

Data Source Variable Used in Data Utilization
Modeling
Shapefile of Indonesia Geospasial ~ Administrative Determine administrative
Indramayu Boundary (spatial boundaries of the study area.
extent) Subdistrict of
Indramayu
Landsat 8/9 United States NDDI (Normalized Analyze drought conditions
Level 2 Geological Survey Difference Drought through the NDDI.
Imagery (USGS) & Google Index)

Average NDDI
Data 2015-
2024
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Earth Engine

Author’s processing
of Landsat-derived
NDDI (2025)

Mean NDDI Value
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Association (LISA) and Global
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Rice Open Data Jabar Rice Productivity Analyze the relationship
Productivity (2015-2020) (ton/ha) between rice productivity and
Data of drought conditions using

Badan Pusat Statistik

Indramayu S Rk com)
Regencyy Jawa Barat (2021- pearman’s Rank Correlation
2024)
2.3. Methods

This research uses remote sensing data from Landsat 8 and 9 Level 2 satellite imagery from 2015 to
2024. Imagery has been radiometrically corrected and cloud masking has been applied to obtain more
representative observations in accordance with real conditions. Subsequently, drought index analysis
uses NDDI and simple linear regression statistical models to predict drought in 2025. The flow diagram
of this research is shown in figure 2.

Landszat B9
Lewel 2 Imagery

v v

NDVI NDWI
Yy
Fice Productivity
per Year
Apgricultural Drought
Miap 2015-2024
' 1
Comelation
Index Tahbla Asricultiural Dronght
Mappinz

Figure 2. Research flowchart
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Spatio-temporal analysis is an integrative approach that combines two analytical dimensions, namely
spatial and temporal. The spatial approach is employed to identify the interrelationships between
regions through spatial autocorrelation analysis. Spatial autocorrelation refers to the correlation between
the values of a single variable, which indicates the degree of similarity of an object with its neighboring
objects in geographic space, thereby explaining the level of homogeneity or heterogeneity among
observation locations [18]. The spatial interaction patterns can be examined both globally using the
Global Moran’s I and locally using the Local Indicators of Spatial Association (LISA) [19]. The spatial
relationship among sub-districts was determined using a distance-based spatial weighting matrix (W)
to capture proximity effects between locations.

2.3.1. Spatio-temporal

Meanwhile, the temporal analysis utilizes time-series NDDI data at the regency level from 2015 to
2024 to identify drought trends over time. The integration of these two approaches allows for the
examination of spatial evolution occurring across temporal dimensions. This enables a deeper
understanding of how the spatial patterns of drought have evolved over time.

2.3.2. NDDI

NDDI is a drought index derived from calculations of Normalized Difference Vegetation Index (NDVI)
and Normalized Difference Water Index (NDW!I) [20]. NDVI is an index for measuring vegetation
density and vegetation health obtained from the ratio of the NIR band (band 5) and the RED band (band
4) from Landsat 8 and 9 satellite imagery. This is based on the principle that vegetation health absorbs
the RED band and reflects the NIR band [21]. Meanwhile, NDWI is an index used to measure moisture
content in vegetation using the SWIR band (band 6) and NIR band (band 5) [22]. The following is the
formula used for NDDI:

NDDI = NDVI - NDWIT (1)
NDVI+ NDWI

The formulas for obtaining NDVI and NDWI are as follows:

NDVI = Band 5 — Band 4 (2)

Band 5 + Band 4

Band 5 — Band 6
NDWI] = —M—
w Band 5 + Band 6 (3)

The classification of drought severity based on NDDI values is presented in table 2.

Table 2. Drought Categories Based on NDDI Classes

Classes NDDI Value
No Drought -1to +0.2
Mild Drought 0.2t0 0.3

Moderate Drought 0.3t0 0.4
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Severe Drought 0.4t00.5

Extreme Drought 0.5to +1

Source: Bhendekar et al. 2025 [23]

2.3.3. Simple Linear Regression

Simple linear regression is a statistical method that involves one independent variable and a dependent
variable through a straight line equation [24]. The independent variable used is the year from 2015 to
2024 and the dependent variable is the NDDI value per pixel each year, which is then predicted. The
formula used is as follows.

NDDIpixel = a+ b *Years 4)
Explanation:

a as the intercept value of NDDI in year-0

b as the upward/downward trend of NDDI in that year

2.3.4. Spearman’s Rank Correlation

Spearman's rank correlation is used for non-parametric and monotonic measurements, which helps
analyze the relationship between two variables [25]. The two variables in this research are the
correlation between the average value of NDDI and rice productivity data for each year. The purpose is
to determine whether drought severity, as represented by the NDDI index, has a statistically significant
association with variations in rice productivity and to provide a complementary perspective to linear
correlation analysis, especially when the data may not fully meet the assumptions of normality or
linearity.

2.3.5 Global Moran’s I and LISA

The Moran Index is a statistical test used to examine the presence of spatial autocorrelation [26]. In the
drought mapping of Indramayu, Global Moran’s I was used to measure the overall spatial patterns of
drought in each year. In addition, the Local Indicators of Spatial Association (LISA) identified specific
locations of spatial clusters and outliers that share similarities or differences with their surrounding
areas [27]. Through the LISA analysis, the mapping results will show clusters with high or low drought
levels. By mapping drought conditions from 2015 to 2024, the sub-districts experiencing consistent
droughts can be identified.

3. Result and Discussion

Following the methodological framework established in the previous section, the analysis was
conducted to model and understand drought patterns in Indramayu. The results and their implications
are presented and discussed in the following subsections.

3.1 NDDI 2015-2024 Modeling Results

The NDDI modeling results for the 2015-2023 period reveal considerable spatial variability in drought
intensity across the Indramayu region. Areas represented by red and orange tones correspond to zones
experiencing high to moderate levels of drought, whereas yellow and green areas indicate relatively
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normal to wet conditions. In general, the southern and western parts of Indramayu exhibit a higher
frequency and persistence of drought than the northern areas, highlighting a spatial disparity in drought
vulnerability within the region.

2018

2019

N 2020
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2021
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Figure 3. Agricultural Drought Maps of Indramayu District for the Period 2015-2024

In 2015, drought conditions peaked, with extensive red and orange zones dominating the entire region,
particularly across the southern lowlands. This pattern reflects the influence of a strong El Nifio event,
which significantly reduced rainfall. By 2016, conditions showed notable improvement, as indicated by
the broader distribution of yellow and green areas on the NDDI map, suggesting increased groundwater
availability and relatively better moisture conditions. Nevertheless, in 2017, drought conditions re-
emerged, particularly in the southern and western parts of the region, although the severity was lower
compared to 2015.

The spatial models for the period 2018 to 2020 indicate relatively fluctuating conditions. In 2018,
several areas experienced moderate drought, while in 2019, the extent of dry areas increased, especially
in the central region. A slight recovery was observed in 2020, with the expansion of yellow and green
zones, although several western districts continued to experience moderate drought. These interannual
variations suggest the presence of a recurring drought cycle occurring at intervals of approximately two
to three years.

Building upon the fluctuating drought patterns observed during 2015-2020, from 2021 to 2023
exhibited less extreme variability. In 2021, orange-colored zones indicating moderate drought remained
present in the southern part of the region, although overall conditions were comparatively better than
those recorded in 2019. A notable improvement occurred in 2022, when green areas dominated much
of the region, reflecting enhanced water availability and a temporary recovery from drought stress.

However, in 2023, moderate drought conditions re-emerged in several western and central districts,
demonstrating the persistence of spatially uneven drought risks. The 2024 projection further illustrates
a mixed pattern, with predominantly green conditions in the northern areas alongside red-orange zones
in the southern region, suggesting the likelihood of localized drought events rather than a widespread
phenomenon.

3.2 Forecasted Agricultural Drought for 2025 Result

Building upon the historical analysis of drought patterns, a forecast was developed to project potential
agricultural drought conditions for the year 2025. The forecast results are visualized in figure 4.
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Figure 4. Agricultural Drought Forecast Map of Indramayu for 2025

Based on the NDDI model results, the southern region of Indramayu Regency indicates that it will be
prone to severe-extreme or moderate to severe drought by 2025. Compared to other regions, there is a
risk imbalance between the northern region, which is relatively safe, and the spatial and drought patterns
are consistent when viewed from 2015 to 2024. The southern region of Indramayu has the potential to
experience a greater reduction in crop yields than the northern region. Therefore, it is emphasized that
drought mitigation strategies need to be focused on the southern region of Indramayu. Drought
mitigation that farmers can do is to optimally implement risk management, such as pump irrigation
from the nearest river or taking groundwater [28].

The estimated drought conditions are relevant as spatial information and as a basis for regional food
policy planning decision-making. By combining the spatial information and quantitative analysis
produced by the method, mitigation strategies can be directed in a more targeted manner. So, the
prediction results show that most of the southern region of Indramayu is expected to fall into the
moderate to extreme drought category. In contrast, the northern region is relatively stable, dominating
the no drought to mild drought category. This pattern emphasizes the importance of long-term
mitigation strategies, such as strengthening irrigation infrastructure and implementing an adaptive
planting calendar so that the generative phase of rice does not fall at the peak of the dry season[29].

3.3 Analysis Spatial Autocorrelation

This section focuses on identifying spatial clustering patterns of agricultural drought in Indramayu using
Global Moran’s Index and LISA (Local Indicators of Spatial Association).

3.3.1 Global Moran’s Index Result

Results of the Global Moran’s Index test are presented in table 3.
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Table 3. Results of Global Moran’s Index of Mean NDDI 2015 - 2024

Y NDDI’s mean Moran’s Index p-
ear Value

20 0.391951 0.537894 0.0000
15 07

20 -0.91193 0.565508 0.0000
16 05

20 0.363515 0.522689 0.0000
17 19

20 0.346504 0.503876 0.0000
18 17

20 0.421201 0.490253 0.0000
19 28

20 0.217825 0.471230 0.0000
20 79

20 0.180257 0.471230 0.0000
21 79

20 0.931961 0.544270 0.0000
22 06

20 0.04985 0.628646 0.0000
23 00

20 0.239029 0.686907 0.0000
24 00

N8 2

<

The Global Moran’s Index analysis reveals consistently significant spatial clustering of agricultural
drought (NDDI) across all years (p < 0.001). Positive Moran’s I values (0.471-0.687) indicates that
areas with similar drought conditions tend to be geographically concentrated. A distinct temporal trend
emerges: clustering strength gradually decreased from 2015-2021, reaching its lowest point (1 =0.471),
then sharply intensified to peak levels in 2023-2024 (I = 0.687). This reversal suggests increasingly

polarized drought vulnerability in recent years.

Notably, drought intensity doesn’t directly correlate with clustering strength. Both severe drought
years (2016: NDDI = -0.912) and moderate years show strong spatial patterns, indicating that
underlying landscape characteristics persistently influence drought distribution regardless of annual
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varitions. These findings confirm that drought vulnerability in Indramayu maintains strong spatial
persistence alongside temporal fluctuations, necessitating location-specific adaptation startegies.

3.3.2 LISA Analysis Results

LISA (Local Indicators of Spatial Association) analysis was conducted to identify local spatial
clustering patterns. The results demonstrate consistent drought distribution patterns throughout the
research period.
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Figure 5. LISA Cluster Maps of Mean NDDI 2015 - 2024

The spatial pattern of drought in Indramayu Regency from 2015 to 2024 exhibits a relatively stable
dynamic with a spatially persistent characteristic. During the initial period (2015-2016), High-High
clusters (areas of high drought intensity) were concentrated in the southern region, particularly in Kroya,
while the northern areas such as Pasekan, Cantigi, and Sindang formed Low-Low clusters, indicating
zones of higher vegetation moisture. In 2017, a spatial shift occurred as drought expanded toward the
central-southern areas (Kroya to Terisi), whereas the northern regions, including Sukra and Patrol,
developed new clusters of lower drought intensity. The year 2018 presented a pattern similar to that of
2015, where Kroya and Gantar once again became the core of drought concentration, suggesting a
recurring spatial cycle. Between 2019 and 2021, the drought intensified in the south (Kroya and Terisi)
while the northern part maintained stable moisture conditions that slightly extended toward central areas
such as Arahan, Losarang, Lohbener, and Sliyeg. From 2022 to 2024, the pattern became increasingly
consistent, with High—High clusters remaining in the south and Low-Low clusters persisting in the
north, covering areas such as Pasekan, Cantigi, Sindang, Indramayu, and Balongan.

Overall, the findings indicate that the contrast between the dry southern region and the moist
northern region has become a persistent spatial pattern in Indramayu. Environmental factors such as
soil characteristics, water availability, and irrigation systems play a crucial role in maintaining this
spatial disparity. Although the spatial structure remains stable, the drought intensity fluctuates from
year to year. Therefore, drought mitigation strategies should focus on the more vulnerable southern
areas, while the northern region should be preserved through sustainable irrigation management and
climate adaptation practices.

424

The 3" International Conference
an Data Science and Official Statistics
Movember 27 - 28, 2025



N8 2

@@5 4

3.4 Relationship between NDDI and Rice Productivity as Supporting Analysis

In addition to spatial and temporal modeling, a supplementary analysis was conducted to assess the
relationship between drought conditions and agricultural productivity. This aims to validate the
applicability of the NDDI in representing agricultural drought conditions in Indramayu Regency. The
analysis utilized average annual NDDI values and official rice productivity data from 2015 to 2024.
The raw data used for the correlation analysis are presented in table 4.

Table 4. Relationship between Rice Productivity and the NDDI Index

Year NDDI Rice Produktivity (tons/ha)
2015 0.391951 6.562
2016 -0.91193 6.531
2017 0.363515 5.312
2018 0.346504 5.96
2019 0.421201 7.701
2020 0.217825 5.672
2021 0.180257 5.812
2022 0.931961 6.042
2023 0.04985 6.16
2024 0.239029 6.574

The complete results of the Spearman’s correlation test are presented in table 3.

Table 5. Results of Spearman Correlation Test between NDDI and Rice Productivity

Variable Pair Correlation Coefficient (p) p-value Sample Size (n)
Productivity VS. 0.164 0.651 10
NDDI

Table 5 shows a correlation coefficient (p) of 0.164, indicating a weak positive relationship between
the two variables. However, the significance value (p-value) of 0.651, which far exceeds the standard
confidence level of 0.05, indicates that this relationship is statistically insignificant. This means the
observed weak relationship is highly likely to have occurred by chance and cannot be generalized. The
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visualization of this relationship is reinforced by the graph in figure 1. The following dual-axis time-
series graph illustrates the annual fluctuations of rice productivity and the NDDI values.

90

80

40 y=-1.2823x+62.613
R = 0.0081

Produktivity

-1.5 -1 -0.5 0 0.5 1 15
NDDI

Figure 6. Graph of the Relationship between Rice Productivity and the NDDI Index

Figure 6 shows no consistent and clear pattern between the NDDI trend and rice productivity. For
instance, in years where the NDDI indicated certain conditions (e.g., negative values suggesting
drought), it was not consistently followed by a decrease in productivity. Conversely, productivity
showed a relatively stable or fluctuating trend that was presumably more influenced by other factors.
This visual result is consistent with and strengthens the finding from the statistical test in table 1, which
concluded the absence of a significant relationship.

Thus, based on these three analytical components, the statistical test table, visual graph, and
interpretation, it can be concluded that the variation in rice productivity in Indramayu Regency from
2015 to 2024 cannot be adequately explained by the variability of drought conditions represented by
the NDDI index at an annual and regency scale. The weak relationship is strongly suspected because
the impact of meteorological drought (captured by NDDI) has been successfully mitigated by the
effective irrigation systems in this rice-producing region. Furthermore, productivity fluctuations are
more likely influenced by other dominant factors such as agricultural policies, the use of inputs
(fertilizers and improved seeds), and cultivation techniques applied by farmers.

4. Conclusion

This study demonstrates distinct spatio-temporal patterns of agricultural drought in Indramayu
Regency, with persistent drought clustering in the southern region across 2015-2024. The spatial-
temporal analysis reveals that spatial vulnerability persists regardless of temporal variability, while
temporal intensification amplifies existing spatial patterns. Critically, the disconnection between these
drought patterns and regency-level productivity underscores irrigation's effectiveness in buffering
climate impacts. Although limited by regency-level productivity data that may mask localized impacts,
the clear disconnection between spatio-temporal drought patterns and productivity underscores
irrigation's effectiveness in mitigating climate risks. Future research should explore district-level
relationships, but the present findings already advocate for a dual strategy: spatially-targeted
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interventions in persistent drought clusters combined with regency-wide optimization of agricultural
management practices to ensure long-term food security.
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