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Abstract. This study examines the spatio-temporal patterns of agricultural drought in 

Indramayu Regency, Indonesia, using the Normalized Difference Drought Index (NDDI) 

derived from Landsat imagery between 2015 and 2024. The analysis employed spatial 

autocorrelation techniques, including Global Moran’s I and Local Indicators of Spatial 

Association (LISA), to identify spatial clustering and persistence of drought conditions. The 

results show consistent spatial vulnerability, with the southern region forming stable High-High 

drought clusters across multiple years, while the northern region remains dominated by Low-

Low clusters. These findings indicate that drought distribution in Indramayu demonstrates 

strong spatial persistence and temporal continuity, reflecting long-term environmental and land-

use characteristics. A supporting correlation analysis between NDDI and rice productivity (ρ = 

0.164; p-value = 0.651) revealed no significant relationship, suggesting that effective irrigation 

systems have mitigated the impact of meteorological drought on agricultural output. Overall, 

the study highlights the need for location-specific drought management in spatially vulnerable 

southern areas to enhance agricultural resilience and regional food security. 
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1. Introduction 

Increased frequency, duration, and intensity of drought in various regions have become one of the most 

significant climate challenges facing the 21st century. According to the World Meteorological 

Organization (WMO), global warming is currently estimated to be between 1,34 and 1,41 °C compared 

to the 19th and 20th centuries [1]. Global temperature records were set from 2023 to 2024, mainly due 

to the continuous increase in greenhouse gas emissions, accompanied by the transition from La Niña to 

El Niño [2]. Meanwhile, the drought in Indonesia is caused by land use adaptation, suboptimal irrigation 

systems, and El Niño effects [3]. These then became factors affecting climate dynamics in Indonesia. 

According to BMKG data 2025, 2023-2024 dry seasons caused by El Niño have resulted in a 50-90% 

decrease in rainfall in various regions, especially during the 2023 dry season, dry reservoirs and water 

sources, an increase in hotspots in several regions, and disruption to planting and a decline in food 

production. In 2025, Indonesia is predicted to experience its peak drought in August [4]. However, the 

duration of the dry season in 2025 is predicted to be shorter than usual.
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This drought phenomenon is linked to climate change [5]. Climate change occurs due to long-term 

shifts in average weather patterns, caused mainly by human activities. The burning of fossil fuels is the 

primary source of greenhouse gas (GHG) emissions, such as carbon dioxide (CO₂), methane (CH₄), and 

nitrous oxide (N₂O). These gases accumulate in the atmosphere and cause the greenhouse effect, which 

increases the Earth's average temperature. This rise in temperature has resulted in various adverse 

consequences, including melting ice in the polar regions, rising sea levels, extreme climate patterns, 

and damaging ecosystems that threaten biodiversity [6].  

Advances in remote sensing technology have opened up enormous opportunities for sustainable 

drought monitoring, especially in the agricultural sector, which is highly vulnerable to climate change. 

Satellite imagery such as Landsat is instrumental because it provides long-term data with medium 

spatial resolution that enables comprehensive analysis of changes in vegetation and soil moisture [7]. 

For example, research in Subang and Karawang shows that the Landsat-based Vegetation Health Index 

(VHI) can detect significant declines in vegetation health due to drought [8]. This satellite image-based 

approach allows for large-scale monitoring. It is more efficient than conventional methods such as 

manual rainfall measurement, field observation, or farmer reports, making it particularly relevant for 

regions such as the Indramayu Regency, which has complex seasonal patterns and rainfall. 

One method that can be used in satellite-based drought monitoring is the Normalized Difference 

Drought Index (NDDI) [9] [10] [11]. NDDI combines two primary indices, NDVI and NDWI, which 

reflect vegetation and moisture conditions, making it a more holistic indicator for detecting drought 

symptoms [12]. NDDI provides more accurate information about drought dynamics because it can 

simultaneously capture changes in land cover and water availability. Therefore, this approach is 

important in routine monitoring and spatial-temporal mitigation of drought impacts. A spatial-temporal 

approach is used to comprehensively understand the relationship between drought variables and 

environmental factors in space and time to support this analysis. This approach has proven effective in 

identifying long-term drought patterns and their impact on agricultural yields, as demonstrated by  

Rahman et al. [13] analyzed drought impacts in Punjab, Pakistan (2001–2020) using MODIS-

derived indices (VCI, TCI, VHI) combined with crop yield residuals, finding severe droughts in 2002 

and 2008 that reduced yields by 39% in rice, 34% in sugarcane, and 25% in wheat; regression analysis 

showed VHI best predicted gram yields (R² = 0.49), while VCI was strongest for sugarcane (R² = 0.56) 

and rice (R² = 0.29). Their resilience analysis classified gram, sugarcane, and maize as highly non-

resilient, wheat and rice as moderately non-resilient, and barley and cotton as more resilient [13]. 

However, Rahman’s study was limited to MODIS coarse-resolution data and retrospective analysis 

without forward-looking projections. Similarly, Sholihah et al. (2016) assessed agricultural drought in 

Karawang and Subang using Landsat-based VHI but only for selected years (2000, 2005, 2010, and 

2015), providing limited temporal coverage and no predictive insights [14]. 

 To overcome these limitations, this study applies the Landsat-based NDDI approach in Indramayu 

Regency for 2015–2024 and employs simple linear regression to project drought conditions for 2025 

and 2030. This approach is expected to provide a more comprehensive perspective on agricultural 

drought dynamics and support regional climate adaptation planning in agriculture. This study was 

conducted to analyze drought in agricultural land in Indramayu Regency from 2015 to 2024 using 

Landsat data and the NDDI approach [15]. The information generated is expected not only to describe 

historical conditions but also to be used to support medium-term projections until 2030. This is 

important for regional policy planning in facing the challenges of climate change while contributing to 

the achievement of the Sustainable Development Goals (SDGs), particularly in the aspects of food 

security (SDG 2) and action on climate change (SDG 13) [16]. This study provides a strategic 

foundation for developing region-based climate adaptation programs and priority sectors.  
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Previous research on drought analysis in Indonesian agricultural areas using the NDDI approach has 

been conducted. However, most of it has focused on a limited period and has not included long-term 

projections. Long-term projections are crucial for anticipating future droughts over multiple years, 

enabling proactive measures to reduce crop losses and manage water efficiently. Based on these 

projections, policies can include adjusting planting schedules, promoting drought-resistant crops, 

improving irrigation and water storage, establishing early warning systems, and supporting long-term 

climate adaptation programs. This study aims to fill this gap by analyzing the dynamics of agricultural 

drought in Indramayu Regency from 2015 to 2024 using the NDDI approach and utilizing simple linear 

regression analysis to forecast drought in 2025. This approach is expected to provide a more 

comprehensive overview and support more effective climate change adaptation planning at the regional 

level, while also considering how agricultural drought in one area can be related to surrounding regions; 

using a spatial model allows the study to capture these inter-regional connections and improve the 

accuracy of drought monitoring and prediction. 

2. Research Method 

The selection of the study area is a crucial first step, as the physical and socio-economic characteristics 

of a region strongly influence the dynamics of drought under investigation. Accordingly, this research 

begins with a detailed description of the study area, followed by a comprehensive explanation of the 

data sources used, and concludes by outlining the analytical methods applied. 

2.1. Study area  

This research is located in Indramayu Regency, West Java, which is widely recognized as one of the 

main rice barns in Indonesia in figure 1. Most of the Indramayu area is agricultural land, primarily 

technical and non-technical irrigated rice fields, mainly supporting the community's livelihood. The 

contribution of the agricultural sector, especially rice, makes this area strategic in supporting national 

food security. With an area dominated by productive rice fields, Indramayu is the center of West Java's 

rice production [16]. 

However, Indramayu's agro-climatic conditions are in the coastal area, making it highly vulnerable 

to seasonal drought. The study shows that drought in this region can occur almost yearly, especially 

during the long dry period. Severe to extreme drought generally lasts from April to November, with the 

highest intensity in September, reaching more than 80% of the affected area [17]. The impact of this 

drought is significant as it directly affects the availability of irrigation water and rice production. With 

the dominance of the agricultural sector and its vulnerability to drought, Indramayu is a clear example 

of a productive agricultural region that faces significant challenges in maintaining the food system's 

sustainability. Therefore, studies on drought in this area are important to support mitigation and 

adaptation strategies to climate variability. 
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Figure 1. Study area. 

2.2. Data 

This study uses three primary data sets to project agricultural drought in Indramayu Regency, they are 

Landsat 8/9 imagery, administrative data, and agricultural productivity data. The table below explains 

the three data types and their sources and uses. This combination of remote sensing data and statistical 

data is used for spatial and temporal analysis of drought conditions in the region. 

Table 1. Research data. 

Data Source Variable Used in 

Modeling 

Data Utilization 

Shapefile of 

Indramayu 

Indonesia Geospasial Administrative  

Boundary (spatial 

extent) Subdistrict of 

Indramayu 

Determine administrative 

boundaries of the study area. 

Landsat 8/9 

Level 2 

Imagery 

United States 

Geological Survey 

(USGS) & Google 

Earth Engine 

NDDI (Normalized 

Difference Drought 

Index) 

Analyze drought conditions 

through the NDDI. 

Average NDDI 

Data 2015-

2024 

Author’s processing 

of Landsat-derived 

NDDI (2025) 

Mean NDDI Value Used for spatial autocorrelation 

analysis, including Local 

Indicators of Spatial 
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Association (LISA) and Global 

Moran’s I. 

Rice 

Productivity 

Data of 

Indramayu 

Regency 

Open Data Jabar 

(2015-2020) 

Badan Pusat Statistik 

Jawa Barat (2021-

2024) 

Rice Productivity 

(ton/ha) 

Analyze the relationship 

between rice productivity and 

drought conditions using 

Spearman’s Rank Correlation. 

2.3. Methods 

This research uses remote sensing data from Landsat 8 and 9 Level 2 satellite imagery from 2015 to 

2024. Imagery has been radiometrically corrected and cloud masking has been applied to obtain more 

representative observations in accordance with real conditions. Subsequently, drought index analysis 

uses NDDI and simple linear regression statistical models to predict drought in 2025. The flow diagram 

of this research is shown in figure 2. 

 

Figure 2. Research flowchart 
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2.3.1. Spatio-temporal 

Spatio-temporal analysis is an integrative approach that combines two analytical dimensions, namely 

spatial and temporal. The spatial approach is employed to identify the interrelationships between 

regions through spatial autocorrelation analysis. Spatial autocorrelation refers to the correlation between 

the values of a single variable, which indicates the degree of similarity of an object with its neighboring 

objects in geographic space, thereby explaining the level of homogeneity or heterogeneity among 

observation locations [18]. The spatial interaction patterns can be examined both globally using the 

Global Moran’s I and locally using the Local Indicators of Spatial Association (LISA) [19]. The spatial 

relationship among sub-districts was determined using a distance-based spatial weighting matrix (W) 

to capture proximity effects between locations. 

 Meanwhile, the temporal analysis utilizes time-series NDDI data at the regency level from 2015 to 

2024 to identify drought trends over time. The integration of these two approaches allows for the 

examination of spatial evolution occurring across temporal dimensions. This enables a deeper 

understanding of how the spatial patterns of drought have evolved over time.  

2.3.2. NDDI  

NDDI is a drought index derived from calculations of Normalized Difference Vegetation Index (NDVI) 

and Normalized Difference Water Index (NDWI) [20]. NDVI is an index for measuring vegetation 

density and vegetation health obtained from the ratio of the NIR band (band 5) and the RED band (band 

4) from Landsat 8 and 9 satellite imagery. This is based on the principle that vegetation health absorbs 

the RED band and reflects the NIR band [21]. Meanwhile, NDWI is an index used to measure moisture 

content in vegetation using the SWIR band (band 6) and NIR band (band 5) [22]. The following is the 

formula used for NDDI: 

𝑁𝐷𝐷𝐼 =  
𝑁𝐷𝑉𝐼 − 𝑁𝐷𝑊𝐼

𝑁𝐷𝑉𝐼 + 𝑁𝐷𝑊𝐼
      (1)

       

The formulas for obtaining NDVI and NDWI are as follows: 

𝑁𝐷𝑉𝐼 =  
𝐵𝑎𝑛𝑑 5 − 𝐵𝑎𝑛𝑑 4

𝐵𝑎𝑛𝑑 5 + 𝐵𝑎𝑛𝑑 4
    (2) 

𝑁𝐷𝑊𝐼 =  
𝐵𝑎𝑛𝑑 5 − 𝐵𝑎𝑛𝑑 6

𝐵𝑎𝑛𝑑 5 + 𝐵𝑎𝑛𝑑 6
     (3) 

The classification of drought severity based on NDDI values is presented in table 2. 

Table 2. Drought Categories Based on NDDI Classes 

Classes NDDI Value 

No Drought -1 to +0.2 

Mild Drought 0.2 to 0.3 

Moderate Drought 0.3 to 0.4 



  

 

 

418 
 

Dela Oktaviani et al 

Severe Drought 0.4 to 0.5 

Extreme Drought 0.5 to +1 

Source: Bhendekar et al. 2025 [23] 

2.3.3. Simple Linear Regression 

Simple linear regression is a statistical method that involves one independent variable and a dependent 

variable through a straight line equation [24]. The independent variable used is the year from 2015 to 

2024 and the dependent variable is the NDDI value per pixel each year, which is then predicted. The 

formula used is as follows. 

𝑁𝐷𝐷𝐼𝑝𝑖𝑥𝑒𝑙 =  𝑎 + 𝑏 ∗ 𝑌𝑒𝑎𝑟𝑠     (4) 

Explanation:  

𝑎 as the intercept value of NDDI in year-0 

𝑏 as the upward/downward trend of NDDI in that year 

2.3.4. Spearman’s Rank Correlation 

Spearman's rank correlation is used for non-parametric and monotonic measurements, which helps 

analyze the relationship between two variables [25]. The two variables in this research are the 

correlation between the average value of NDDI and rice productivity data for each year. The purpose is 

to determine whether drought severity, as represented by the NDDI index, has a statistically significant 

association with variations in rice productivity and to provide a complementary perspective to linear 

correlation analysis, especially when the data may not fully meet the assumptions of normality or 

linearity. 

2.3.5 Global Moran’s I and LISA 

The Moran Index is a statistical test used to examine the presence of spatial autocorrelation [26]. In the 

drought mapping of Indramayu, Global Moran’s I was used to measure the overall spatial patterns of 

drought in each year. In addition, the Local Indicators of Spatial Association (LISA) identified specific 

locations of spatial clusters and outliers that share similarities or differences with their surrounding 

areas [27]. Through the LISA analysis, the mapping results will show clusters with high or low drought 

levels. By mapping drought conditions from 2015 to 2024, the sub-districts experiencing consistent 

droughts can be identified. 

 

3. Result and Discussion 

Following the methodological framework established in the previous section, the analysis was 

conducted to model and understand drought patterns in Indramayu. The results and their implications 

are presented and discussed in the following subsections. 

3.1 NDDI 2015-2024 Modeling Results 

The NDDI modeling results for the 2015–2023 period reveal considerable spatial variability in drought 

intensity across the Indramayu region. Areas represented by red and orange tones correspond to zones 

experiencing high to moderate levels of drought, whereas yellow and green areas indicate relatively 
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normal to wet conditions. In general, the southern and western parts of Indramayu exhibit a higher 

frequency and persistence of drought than the northern areas, highlighting a spatial disparity in drought 

vulnerability within the region. 
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Figure 3. Agricultural Drought Maps of Indramayu District for the Period 2015-2024 

In 2015, drought conditions peaked, with extensive red and orange zones dominating the entire region, 

particularly across the southern lowlands. This pattern reflects the influence of a strong El Niño event, 

which significantly reduced rainfall. By 2016, conditions showed notable improvement, as indicated by 

the broader distribution of yellow and green areas on the NDDI map, suggesting increased groundwater 

availability and relatively better moisture conditions. Nevertheless, in 2017, drought conditions re-

emerged, particularly in the southern and western parts of the region, although the severity was lower 

compared to 2015. 

The spatial models for the period 2018 to 2020 indicate relatively fluctuating conditions. In 2018, 

several areas experienced moderate drought, while in 2019, the extent of dry areas increased, especially 

in the central region. A slight recovery was observed in 2020, with the expansion of yellow and green 

zones, although several western districts continued to experience moderate drought. These interannual 

variations suggest the presence of a recurring drought cycle occurring at intervals of approximately two 

to three years. 

Building upon the fluctuating drought patterns observed during 2015-2020, from 2021 to 2023 

exhibited less extreme variability. In 2021, orange-colored zones indicating moderate drought remained 

present in the southern part of the region, although overall conditions were comparatively better than 

those recorded in 2019. A notable improvement occurred in 2022, when green areas dominated much 

of the region, reflecting enhanced water availability and a temporary recovery from drought stress. 

However, in 2023, moderate drought conditions re-emerged in several western and central districts, 

demonstrating the persistence of spatially uneven drought risks. The 2024 projection further illustrates 

a mixed pattern, with predominantly green conditions in the northern areas alongside red-orange zones 

in the southern region, suggesting the likelihood of localized drought events rather than a widespread 

phenomenon. 

3.2 Forecasted Agricultural Drought for 2025 Result 

Building upon the historical analysis of drought patterns, a forecast was developed to project potential 

agricultural drought conditions for the year 2025. The forecast results are visualized in figure 4. 
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Figure 4. Agricultural Drought Forecast Map of Indramayu for 2025 

Based on the NDDI model results, the southern region of Indramayu Regency indicates that it will be 

prone to severe-extreme or moderate to severe drought by 2025. Compared to other regions, there is a 

risk imbalance between the northern region, which is relatively safe, and the spatial and drought patterns 

are consistent when viewed from 2015 to 2024. The southern region of Indramayu has the potential to 

experience a greater reduction in crop yields than the northern region. Therefore, it is emphasized that 

drought mitigation strategies need to be focused on the southern region of Indramayu. Drought 

mitigation that farmers can do is to optimally implement risk management, such as pump irrigation 

from the nearest river or taking groundwater [28]. 

The estimated drought conditions are relevant as spatial information and as a basis for regional food 

policy planning decision-making. By combining the spatial information and quantitative analysis 

produced by the method, mitigation strategies can be directed in a more targeted manner. So, the 

prediction results show that most of the southern region of Indramayu is expected to fall into the 

moderate to extreme drought category. In contrast, the northern region is relatively stable, dominating 

the no drought to mild drought category. This pattern emphasizes the importance of long-term 

mitigation strategies, such as strengthening irrigation infrastructure and implementing an adaptive 

planting calendar so that the generative phase of rice does not fall at the peak of the dry season[29]. 

3.3 Analysis Spatial Autocorrelation 

This section focuses on identifying spatial clustering patterns of agricultural drought in Indramayu using 

Global Moran’s Index and LISA (Local Indicators of Spatial Association). 

 

3.3.1 Global Moran’s Index Result 

Results of the Global Moran’s Index test are presented in table 3. 
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Table 3. Results of Global Moran’s Index of Mean NDDI 2015 - 2024 

Y

ear 

NDDI’s mean Moran’s Index p-

Value 

20

15 

0.391951 0.537894 0.0000

07 

20

16 

-0.91193 0.565508 0.0000

05 

20

17 

0.363515 0.522689 0.0000

19 

20

18 

0.346504 0.503876 0.0000

17 

20

19 

0.421201 0.490253 0.0000

28 

20

20 

0.217825 0.471230 0.0000

79 

20

21 

0.180257 0.471230 0.0000

79 

20

22 

0.931961 0.544270 0.0000

06 

20

23 

0.04985 0.628646 0.0000

00 

20

24 

0.239029 0.686907 0.0000

00 

 

The Global Moran’s Index analysis reveals consistently significant spatial clustering of agricultural 

drought (NDDI) across all years (p < 0.001). Positive Moran’s I values (0.471-0.687) indicates that 

areas with similar drought conditions tend to be geographically concentrated. A distinct temporal trend 

emerges: clustering strength gradually decreased from 2015-2021, reaching its lowest point (I = 0.471), 

then sharply intensified to peak levels in 2023-2024 (I = 0.687). This reversal suggests increasingly 

polarized drought vulnerability in recent years.  

 Notably, drought intensity doesn’t directly correlate with clustering strength. Both severe drought 

years (2016: NDDI = -0.912) and moderate years show strong spatial patterns, indicating that 

underlying landscape characteristics persistently influence drought distribution regardless of annual 
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varitions. These findings confirm that drought vulnerability in Indramayu maintains strong spatial 

persistence alongside temporal fluctuations, necessitating location-specific adaptation startegies. 

 

3.3.2 LISA Analysis Results 

LISA (Local Indicators of Spatial Association) analysis was conducted to identify local spatial 

clustering patterns. The results demonstrate consistent drought distribution patterns throughout the 

research period. 
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Figure 5. LISA Cluster Maps of Mean NDDI 2015 - 2024 

The spatial pattern of drought in Indramayu Regency from 2015 to 2024 exhibits a relatively stable 

dynamic with a spatially persistent characteristic. During the initial period (2015–2016), High–High 

clusters (areas of high drought intensity) were concentrated in the southern region, particularly in Kroya, 

while the northern areas such as Pasekan, Cantigi, and Sindang formed Low–Low clusters, indicating 

zones of higher vegetation moisture. In 2017, a spatial shift occurred as drought expanded toward the 

central–southern areas (Kroya to Terisi), whereas the northern regions, including Sukra and Patrol, 

developed new clusters of lower drought intensity. The year 2018 presented a pattern similar to that of 

2015, where Kroya and Gantar once again became the core of drought concentration, suggesting a 

recurring spatial cycle. Between 2019 and 2021, the drought intensified in the south (Kroya and Terisi) 

while the northern part maintained stable moisture conditions that slightly extended toward central areas 

such as Arahan, Losarang, Lohbener, and Sliyeg. From 2022 to 2024, the pattern became increasingly 

consistent, with High–High clusters remaining in the south and Low–Low clusters persisting in the 

north, covering areas such as Pasekan, Cantigi, Sindang, Indramayu, and Balongan. 

 Overall, the findings indicate that the contrast between the dry southern region and the moist 

northern region has become a persistent spatial pattern in Indramayu. Environmental factors such as 

soil characteristics, water availability, and irrigation systems play a crucial role in maintaining this 

spatial disparity. Although the spatial structure remains stable, the drought intensity fluctuates from 

year to year. Therefore, drought mitigation strategies should focus on the more vulnerable southern 

areas, while the northern region should be preserved through sustainable irrigation management and 

climate adaptation practices. 
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3.4 Relationship between NDDI and Rice Productivity as Supporting Analysis 

In addition to spatial and temporal modeling, a supplementary analysis was conducted to assess the 

relationship between drought conditions and agricultural productivity. This aims to validate the 

applicability of the NDDI in representing agricultural drought conditions in Indramayu Regency. The 

analysis utilized average annual NDDI values and official rice productivity data from 2015 to 2024. 

The raw data used for the correlation analysis are presented in table 4. 

Table 4. Relationship between Rice Productivity and the NDDI Index 

Year NDDI Rice Produktivity (tons/ha) 

2015 0.391951 6.562 

2016 -0.91193 6.531 

2017 0.363515 5.312 

2018 0.346504 5.96 

2019 0.421201 7.701 

2020 0.217825 5.672 

2021 0.180257 5.812 

2022 0.931961 6.042 

2023 0.04985 6.16 

2024 0.239029 6.574 

 The complete results of the Spearman’s correlation test are presented in table 3. 

Table 5. Results of Spearman Correlation Test between NDDI and Rice Productivity 

Variable Pair Correlation Coefficient (ρ) p-value Sample Size (n) 

Productivity vs. 

NDDI 

0.164 0.651 10 

 Table 5 shows a correlation coefficient (ρ) of 0.164, indicating a weak positive relationship between 

the two variables. However, the significance value (p-value) of 0.651, which far exceeds the standard 

confidence level of 0.05, indicates that this relationship is statistically insignificant. This means the 

observed weak relationship is highly likely to have occurred by chance and cannot be generalized. The 
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visualization of this relationship is reinforced by the graph in figure 1. The following dual-axis time-

series graph illustrates the annual fluctuations of rice productivity and the NDDI values. 

 

Figure 6. Graph of the Relationship between Rice Productivity and the NDDI Index 

 Figure 6 shows no consistent and clear pattern between the NDDI trend and rice productivity. For 

instance, in years where the NDDI indicated certain conditions (e.g., negative values suggesting 

drought), it was not consistently followed by a decrease in productivity. Conversely, productivity 

showed a relatively stable or fluctuating trend that was presumably more influenced by other factors. 

This visual result is consistent with and strengthens the finding from the statistical test in table 1, which 

concluded the absence of a significant relationship. 

Thus, based on these three analytical components, the statistical test table, visual graph, and 

interpretation, it can be concluded that the variation in rice productivity in Indramayu Regency from 

2015 to 2024 cannot be adequately explained by the variability of drought conditions represented by 

the NDDI index at an annual and regency scale. The weak relationship is strongly suspected because 

the impact of meteorological drought (captured by NDDI) has been successfully mitigated by the 

effective irrigation systems in this rice-producing region. Furthermore, productivity fluctuations are 

more likely influenced by other dominant factors such as agricultural policies, the use of inputs 

(fertilizers and improved seeds), and cultivation techniques applied by farmers. 

 

4. Conclusion 

This study demonstrates distinct spatio-temporal patterns of agricultural drought in Indramayu 

Regency, with persistent drought clustering in the southern region across 2015-2024. The spatial-

temporal analysis reveals that spatial vulnerability persists regardless of temporal variability, while 

temporal intensification amplifies existing spatial patterns. Critically, the disconnection between these 

drought patterns and regency-level productivity underscores irrigation's effectiveness in buffering 

climate impacts. Although limited by regency-level productivity data that may mask localized impacts, 

the clear disconnection between spatio-temporal drought patterns and productivity underscores 

irrigation's effectiveness in mitigating climate risks. Future research should explore district-level 

relationships, but the present findings already advocate for a dual strategy: spatially-targeted 



  

 

 

427 
 

Dela Oktaviani et al 

interventions in persistent drought clusters combined with regency-wide optimization of agricultural 

management practices to ensure long-term food security. 
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