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Abstract. Accurate forecasting of agricultural exports is crucial for supporting trade policy and 

ensuring economic stability in Indonesia. This study investigates the impact of training–testing 

proportions on the forecasting accuracy of six models: linear regression, decision tree, optimized 

decision tree, neural network, Auto Regressive Integrated Moving Average (ARIMA), and 

exponential smoothing. Using Indonesia’s agricultural export data, model performance was 

evaluated under two data-splitting schemes (80%:20% and 75%:25%) with error metrics 

including MAE, MSE, RMSE, and MAPE. The results consistently show that statistical time 

series models outperform regression-based and machine learning approaches. In particular, SES 

achieved the lowest forecasting errors across all evaluation criteria, with MAPE values as low 

as 0.93%, followed by ARIMA as the second-best performer. Machine learning models, on the 

other hand, produced relatively higher error values, suggesting their limited ability to capture 

temporal dependencies in the data. Importantly, the choice of training–testing proportion did not 

significantly alter the ranking of model performance, indicating that model selection plays a 

more critical role than data partitioning. Overall, this study highlights the robustness of 

exponential smoothing methods as reliable forecasting tools for Indonesia’s agricultural exports 

and provides evidence-based insights for policymakers in designing effective trade strategies. 

 Keyword: ARIMA, agricultural exports, exponential smoothing, forecasting model, machine 

learning. 

 

 

1. Introduction 

In the early 1980s and early 1990s, Indonesia was one of the most productive agricultural nations. Since 

its population's demands are being exceeded by the amount of production, it is exporting this production 

[1]. Being an agricultural nation, Indonesia has the capacity to control the global trade market in terms 

of the volume of agriculture products [2]. Agriculture is a major source of income for many Indonesians, 

particularly those who reside in rural areas, and it plays a significant role in the daily life of several 

Indonesians [3]. Furthermore, Indonesia’s agricultural exports are an important aspect of growth, rural 

income, and foreign exchange, but monthly export values are influenced to global rate movement [4], 

[5]. Agricultural products in Indonesia that are highly competitive and of high quality will be able to
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penetrate export markets in ASEAN countries, which will in turn boost domestic production, increase 

farmers' incomes, create job opportunities for young people, and generate foreign exchange for the 

country. In addition, an issue affecting Indonesia's agriculture industry is the aging of its farmers, which 

is linked to their inability to absorb new breakthroughs or technologies [6]. Forecast accuracy is a vital 

role for public authorities and agribusinesses, which apply predictions to allocate resources wisely and 

minimize climate-related risks. Hence, strengthening accuracy and communication of forecasts is key 

to support agricultural decision-making [7], [8]. 

The process of making the most accurate predictions about the future is called forecasting [9]. The 

main goal of a forecasting approach is to create a mathematical model that forecasts future production 

by utilizing a number of criteria [10]. According to trading value and policymakers, risk management, 

and price speculation in particular, in commodities trading should be more precisely quantified, 

computed, predicted, and analyzed [11]. Forecasting the agriculture export value is intriguing and 

difficult because it resembles a time-series data set with a complex and dynamic stability level. Having 

correct information on the agricultural situation is highly crucial. Making informed decisions in today's 

market is made possible by the ability to forecast agricultural product trends [12]. Since it helps to lower 

future uncertainty, forecasting future events is crucial in many fields to aid in decision-making [13]. In 

this study, forecasting is not only concerned with decreasing errors after the fact, but also with 

guaranteeing reliability before decisions are proposed. Fragile back-testing may cause agencies to issue 

allows at the wrong time or allocate buffers not appropriately, which could intensify volatility instead 

of stabilizing it [14], [15], [16], [17]. Consequently, this research extends beyond point accuracy to 

evaluating how resilient model performance remains under varying validation scenarios. 

An often neglected but vital address of reliability is the dividing of historical data for validation. 

Different train–test ratio reshape the learning and testing horizons that bigger train proportion can 

decrease variance yet miss recent shifts, whereas smaller test proportion horizons test stability but risk 

under-fitting [18], [19], [20]. This impacts both accuracy measures and model rankings sensitive to the 

partition ratio [21]. For policymakers, such sensitivity indicates fragile reliability and heightens decision 

risks in monitoring and timing. To the best of our knowledge, this is the first study that analyze training-

testing proportion in the forecasting agriculture export model. There is currently no agreement based 

on theoretical and numerical research regarding the ideal data splitting ratio [22]. A popular method in 

machine learning and predictive modeling is to divide a dataset into two separate halves, usually called 

the training and testing datasets [23]. There are several studies that concern in different splitting dataset 

75%:25% training and testing [24], 50% testing data set [25], and based  on asymptotic analysis, testing 

ratio ought to approach 100% when the volume of data increases significantly [26]. In addition, 

numerical research has suggested that a testing set of about 30% is a sensible option [27]. Therefore, 

specifically, this study evaluates how 75%:25% and 80%:20% chronological partition affect the 

forecasting model accuracy and whether model rankings remain stable across these validation choices. 

This study addresses this gap by benchmarking six widely used approaches on Indonesia’s 

agricultural export series under two schemes splitting data set, 80%:20% and 75%:25% with some 

techniques Simple Linear Regression, Decision Tree, Neural Network, Auto Regressive Integrated 

Moving Average (ARIMA), and Simple Exponential Smoothing (SES). The paper is organized as 

follows. Section 2 presents a brief discussion of research method which consist of data used, methods 

used, and performance evaluation criteria. Section 3 presents result and discussion which is the 

forecasting results of five. And accuracies of all models are also discussed. Section 4 contains 

conclusions and recommendations for the future research. 
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2. Research Method 

2.1. Data used 

The study looks at monthly data on agriculture exports from Indonesia between January 2012 and May 

2025. Overall, as Figure 1 illustrates, the time series of Indonesia’s agricultural exports shows an overall 

upward trend with noticeable seasonal and cyclical fluctuations, reflecting recurring peaks and troughs 

over time. In the later periods, exports display higher volatility and sharp growth, indicating both 

increasing variability and significant expansion in the sector. Moreover, in this research, it has been 

evaluated models under two chronological train–test partitions that are widely used in practice: 

80%:20% and 75%:25%, respectively[22], [24], [28]. The proportion is determined to investigate the 

impact of different data grouping and to balance estimation sufficiency and evaluation robustness on 

our 161-month series. The data partitioning is as a method for internal validation, where the model is 

validated on the same dataset it was developed on [29]. In addition, Figure 2 presents two different 

approaches to splitting the agricultural export time series into training and testing sets. In panel (a), 80% 

of the data (January 2012–September 2022) is used to train the forecasting models, while the remaining 

20% (October 2022–May 2025) is reserved for testing. In panel (b), the split is adjusted to 75% training 

(January 2012–January 2022) and 25% testing (February 2022–May 2025), allowing comparison of 

how training–testing proportions influence forecasting accuracy. 

 

Figure 1. Time series plot of Indonesia’s agriculture export. 

 

 

Figure 2. Training and testing dataset partition schemes for Indonesia’s agricultural export 

forecasting (a) 80%:20%, (b) 75%:25%. 
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2.2. Method used  

Simple Linear Regression (SLR) 

By interpreting the explanatory factors in a linear function, linear regression aims to explain the 

fluctuation of a dependent variable [30]. Moreover, in SLR, output variable defined as 𝑌𝑎 is related 

linearly with input variable defined as 𝑋𝑎 [31]. Equation (1) will be used to get the expected output 𝑌 

for a given input 𝑋𝑎 where 𝑚 is the regression coefficient and 𝑐 is the intercept of the regression line 

[32]. 

𝑌 = 𝑚 𝑋𝑎 + 𝑐  (1) 

Decision tree  

By using particular criteria during the decision-making process, the decision tree, a supervised simple 

classification tool can divide data records into predetermined groups [33]. It is a well-known tool that 

is among the most effective with comparatively low interpretability learning curves. It is frequently 

used in a variety of contexts, including image processing, machine learning, data mining, and pattern 

recognition. Decision trees are a type of machine learning algorithm that classifies or predicts a few 

small groups of people by charting many decision-making principles [34]. Figure 3 illustrates a decision 

tree's fundamental structure. 

 

 

Figure 3. Decision tree basic structure [34].  

Neural network (NN) 

A type of artificial intelligence known as neural networks (NN) mimics the organic makeup of the 

human brain [35]. Applications for NN are not limited to a single field, rather, they are diverse which 

can be used for a number of purposes [36]. Moreover, NN is a non-linear function that maps from a 

measurable input set 𝑋 to a measurable output set 𝑌, 𝑓𝜃, and is parameterized by model parameters 𝜃, 

or the network weights [37], [38] as represented in Equation (2). 

𝑓𝜃: 𝑋 → 𝑌       𝑓𝜃(𝑥) = 𝑦  (2) 

Simple exponential smoothing (SES) 
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A time-series forecasting technique for univariate data without trend or seasonality is called simple 

exponential smoothing, or SES. The smoothing factor or smoothing coefficient, alpha (α), is the only 

parameter needed [39], [40]. The exponential decay of the influence of the observations at previous 

time steps is controlled by this parameter. Typically, alpha is set to a number between 0 and 1. 

Furthermore, SES corresponds to Equation (4) written as 

𝑦′𝑡 = α yt + (1 − α)𝑦′𝑡−1 (3) 

when 𝑦𝑡 is denoted as the observation value, 𝑦′𝑡 is denoted as the fitted value of 𝑦𝑡, α is denoted as the 

weight place on the end observation (0 ≤ 𝛼 ≤ 1). 

Auto Regressive Integrated Moving Average (ARIMA) 

One kind of statistical model for evaluating and predicting time-series data is an ARIMA model [39]. 

When the data is univariate, stationary, and free of anomalies, ARIMA can be applied. The difference 

can be applied once or twice to eliminate non-stationarity cases [40]. Furthermore, ARIMA corresponds 

to Equation (4) written as 

𝑦𝑡
′ = 𝑐 + ∅1𝑦𝑡−1

′ + ⋯ + ∅𝑝𝑦𝑡−𝑝
′ + ∅𝑝 ∈𝑡−1+ ⋯ + ∅𝑞 ∈𝑡−𝑞+∈𝑡  (4) 

when the differenced series denoted by 𝑦𝑡
′. Both lagged errors and values of 𝑦𝑡

′ are included in the 

predictors. The following factors determine it:  

i. 𝑝 (lag order): the number of lag observations in the model 

ii. 𝑑 (degree of differencing): the number of times the raw observations are differentiable 

iii. 𝑞 (order of moving average): the size of the moving average window 

2.3. Performance evaluation criteria  

To assess the forecasting performance of each model, several error metrics were employed. These 

metrics are widely used in time series forecasting to capture different aspects of model accuracy. The 

following four criteria were adopted [41], [42], [43]: 

1. Mean Absolute Error (MAE) 

Without taking into account the direction of the errors, MAE calculates the average size of the 

errors in a collection of forecasts. It is described in Equation (5) as follow: 

𝑀𝐴𝐸 =
1

𝑚
∑|𝑋𝑖 − 𝑌𝑖|

𝑚

𝑖=1

 (5) 

where 𝑌𝑖 is the actual ith value, and  𝑋𝑖 is the forecasted ith value, and 𝑚 is the number of 

observations. 

2. Mean Squared Error (MSE)  

MSE squares the difference between actual and predicted values to penalize greater errors more 

severely. It is written in Equation (6) as follow: 

𝑀𝑆𝐸 =
1

𝑚
∑(𝑋𝑖 − 𝑌𝑖)2

𝑚

𝑖=1

(6)  

3. Root Mean Squared Error (RMSE)  

An interpretable metric in the same unit as the data is provided by RMSE, which is the square root 

of MSE. It is described in Equation (7) as follow: 
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𝑅𝑀𝑆𝐸 = √
1

𝑚
∑(𝑋𝑖 − 𝑌𝑖)2

𝑚

𝑖=1

(7) 

4. Mean Absolute Percentage Error (MAPE) 

Forecasting accuracy is expressed as a percentage using MAPE, making it simple to interpret across 

datasets. It is written in Equation (8) as follow: 

𝑀𝐴𝐸 =
1

𝑚
∑ |

𝑋𝑖 − 𝑌𝑖

𝑦𝑖
|

𝑚

𝑖=1

(8) 

3. Result and Discussion 

It has been conducted five models to forecast Indonesia’s agricultural export which are linear regression, 

decision tree, neural network, ARIMA and simple exponential smoothing. The observation values have 

been divided into training and testing data set such that 80%:20% and 75%-25%, respectively.  
      According to Table 1, The regression model for 80% training data 𝑦 = 109.545 + 0.526 𝑥1 +

0.284 𝑥2 − 0.154 𝑥3 shows that 𝑥1 and 𝑥2 significantly and positively influence the dependent variable, 

while 𝑥3 has a negative but insignificant effect. The model explains about 39% of the variance (𝑅2 =

0.3937) and is highly significant overall (𝑝 < 0.001). In another words, the regression model for 75% 

train-data 𝑦 = 126.91038 + 0.48458 x1 + 0.29048 x2 − 0.18553 x3  suggests that 𝑥1 and 𝑥2 have 

significant positive effects on the dependent variable, whereas 𝑥3 contributes negatively but without 

statistical significance. With an 𝑅2 = 0.368 and an overall p-value of 2.402 × 10−11, the model 

explains about 37% of the variance and is statistically significant as a whole. 

 The decision tree for 80% training data shows that 𝑥1 is the most influential predictor, with further 

splits refined by 𝑥2 and 𝑥3. The terminal nodes represent forecasted agricultural export values for 

different data segments, capturing nonlinear relationships among the variables. While the decision tree 

model for 75% training data starts with 𝑥1 as the root split, followed by 𝑥2 and 𝑥3 as secondary 

predictors. The structure shows how combinations of these variables define different paths, leading to 

terminal nodes that represent predicted agricultural export values for specific conditions. Moreover, NN 

model in this approach has structure with three input variables, one hidden layer containing seven 

neurons for 80% training data while five neurons for 75% training data, and a single output neuron. The 

model utilizes weighted connections and biases to capture nonlinear relationships between predictors 

and agricultural export values.  

 In this study, ARIMA model proposed with first differencing. It means that parameter 𝑑 equals 1. 

The ARIMA residuals histogram for both training-testing data proportions indicate that the residuals 

are close to a normal distribution because the majority of forecast errors are centered around zero and 

essentially follow a bell-shaped curve. Given that errors appear random rather than systematic, this 

suggests that the ARIMA model has done a respectable job of capturing the underlying structure of the 

data. In addition, exponential smoothing model for both training-testing data proportions decompose 

the dataset into some components. This makes its model particularly effective for time series with non-

linear trends and multiple seasonal cycles. 

Table 1. Model construction under two training–testing proportions. 

Model 
Construction 

80%:20% 75%:20% 

Linear 

regressi

on 

𝑦 = 109.545 + 0.526 𝑥1 + 0.284 𝑥2

− 0.154 𝑥3 

 

𝑦 = 126.91038 + 0.48458 x1

+ 0.29048 x2

− 0.18553 x3 
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Decision 

tree 

  

Neural 

network 

 

 

 

 

ARIMA 

  

SES 

 
 

  The forecasting plots in Figure 4 reveal notable differences in predictive performance among 

the models. Linear regression (a) and decision tree (b) tend to underestimate fluctuations, producing 

smoother predictions compared to the actual values. The neural network (c) shows improved 

adaptability to changing trends but still exhibits slight deviations in peak values. ARIMA (d) 

demonstrates strong alignment with the actual series, effectively capturing short-term variations, while 

simple exponential smoothing (e) provides stable predictions but fails to adequately follow rapid 

changes. Although actual values span the full time step in Figure 4(e), in the simple exponential 

smoothing plot they are obscured because the red forecast line overlaps the blue actual line beyond step 

15, owing to plotting order and high similarity. Overall, ARIMA and neural network models exhibit the 

closest fit to the actual export data, indicating their suitability for capturing both trend and variability 

in Indonesia’s agricultural export series. 
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(a) (b) 

  
(c) (d) 

 
(e) 

Figure 4. Forecasting performance on Indonesia’s agricultural export data using the 80%:20% 

training–testing split: (a) simple linear regression, (b) decision tree, (c) neural network, (d) ARIMA, 

and (e) simple exponential smoothing. 

 Figure 5 compares the forecasting performance of five models against the actual agricultural export 

data. The simple linear regression (a), decision tree (b), and neural network (c) show noticeable 

deviations between actual and predicted values, particularly in capturing sharp fluctuations. ARIMA 

(d) demonstrates improved alignment, but still underestimates peak values. In contrast, simple 

exponential smoothing (e) exhibits the closest match to the actual series, effectively following both the 

overall trend and short-term variations, consistent with its superior error metrics reported in Table 1. 
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(a) (b) 

  
(c) (d) 

 
(e) 

Figure 5. Forecasting performance on Indonesia’s agricultural export data using the 75%:25% 

training–testing split: (a) simple linear regression, (b) decision tree, (c) neural network, (d) ARIMA, 

and (e) simple exponential smoothing. 

Table 2 presents the forecasting performance of six different models—linear regression, decision 

tree, optimized decision tree, neural network, ARIMA, and simple exponential smoothing (SES)under 

two training–testing proportions (80%:20% and 75%:25%). Across both settings, the statistical time 

series models (ARIMA and SES) consistently outperform machine learning and regression-based 

approaches, highlighting their ability to effectively capture the temporal dependencies in agricultural 

export data. Specifically, SES achieves the lowest errors in all evaluation metrics, with MAE of 4.7699 

and 3.8349, and MAPE of 1.2148% and 0.9322% for the 80%:20% and 75%:25% splits, respectively. 

These results demonstrate that SES is highly reliable and well-suited for forecasting data with relatively 

stable structures. ARIMA ranks as the second-best performer, also producing relatively low MAE and 

RMSE values, although slightly higher than those of SES.  

By contrast, machine learning models such as decision tree, optimized decision tree, and neural 

network exhibit considerably higher error values across MAE, MSE, RMSE, and MAPE. This suggests 

that these models may be less effective in modelling the time-dependent and auto correlated nature of 

agricultural export data, which is better suited to statistical approaches. These findings align with prior 
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studies [44] that emphasize the robustness of exponential smoothing methods in economic and 

agricultural forecasting. Furthermore, although neural networks are capable of capturing nonlinearities, 

their performance is often dependent on larger datasets and extensive parameter tuning (Zhang et al., 

2019), which may explain their lower accuracy in this case. 

Table 2. Forecasting performance of different models under two training–testing proportions. 

  MAE MSE RMSE MAPE 

80%:20%   

Linear regression  64.7610 6885.4812 82.9788 13.5192 

Decision tree opt 92.8090 13404.4527 115.7776 19.1666 

Neural network  57.8723 5465.6922 73.9303 12.1602 

ARIMA 7.7257 261.8439 16.1816 1.7618 

SES 4.7699 59.4099 7.7078 1.2148 

75%:25% 
 

Linear regression  66.0883 7134.5643 84.4664 14.2112 

Decision tree opt 89.0647 12671.9374 112.5697 18.6898 

Neural network  70.5273 8015.4186 89.5289 15.0187 

ARIMA 7.8641 159.8300 12.6424 1.9706 

SES 3.8349 17.3444 4.1647 0.9322 
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Figure 6. Comparison of forecasting performance across different models under two training–testing 

(a) MAE, (b) MSE, (c) RMSE, and (d) MAPE. 

 The results in Figure 6 further reinforce these observations by illustrating that SES consistently 

produces the lowest error metrics across both training–testing proportions, confirming its robustness. 

ARIMA also demonstrates strong performance, albeit slightly inferior to SES, while regression-based 

and machine learning models fall behind. Across both splitting schemes (75%:25% and 80%:20%), the 

relative ordering of models remains stable: SES obtains the lowest MAE/RMSE/MAPE, ARIMA is the 

second rank, and machine-learning/regression baselines trail behind. Absolute error levels change only 

marginally between the two proportions, indicating that the ratio selection within this range has a 

negligible effect on out-of-sample performance. Importantly, the choice of training–testing proportion 

(80%:20% vs. 75%:25%) appears to have only a minor influence on forecasting accuracy, as the ranking 

of models remains unchanged. This indicates that model selection has a far greater impact on forecasting 

performance than the specific partitioning of training and testing data. From a practical standpoint, this 

robustness underscores the reliability of SES and ARIMA as benchmark models for forecasting 

Indonesia’s agricultural export trends. Taken together, these findings highlight that exponential 

smoothing methods not only deliver the most accurate forecasts but also maintain stable performance 

under different data-splitting schemes. This consistency is particularly valuable for policymakers and 

practitioners, as it ensures that forecasting outcomes remain dependable despite variations in data 

availability. While more complex machine learning approaches may be useful in other contexts, the 

results suggest that statistical models remain superior for forecasting agricultural export data with strong 

temporal patterns. 

 The results highlight that exponential smoothing methods provide the most accurate and reliable 

forecasts for Indonesia’s agricultural export series. This finding is consistent with earlier studies that 

emphasize the robustness of exponential smoothing in modeling economic and trade-related time series 

[9]. Previous works have also shown that exponential smoothing can outperform more complex 
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approaches such as ARIMA and neural networks, particularly in datasets with trend and seasonal 

structures [45], [46]. Another important finding is that varying the training–testing proportion 

(75%:25% vs. 80%:20%) does not significantly affect the ranking of forecasting performance. This 

result supports previous evidence that exponential smoothing yields stable and consistent accuracy 

across different data partitions, making it highly reliable for practical forecasting applications [47]. 

Taken together, these findings strengthen the position of exponential smoothing as a benchmark 

forecasting method due to its stability, interpretability, and computational simplicity. While advanced 

methods such as ARIMA, ANFIS, or neural networks may provide competitive results, exponential 

smoothing offers a dependable balance between accuracy and practicality, making it suitable for guiding 

trade-related decision-making in Indonesia. 

4. Conclusion 

This study shows that, for Indonesia’s monthly agricultural exports, changing the train–test split 

between 75%:25% and 80%:20% has little effect on forecasting accuracy and does not alter the ranking 

of models. Simple Exponential Smoothing (SES) consistently provides the best results, followed by 

ARIMA, while regression, decision tree, and neural network models perform less effectively. In 

practice, this suggests that policymakers and agencies should focus more on selecting the robust  model 

which may apply SES or ARIMA as reliable baselines across multiple seasonal cycles treating the exact 

proportion of training data within the 75–80% range as less critical. More complex techniques may only 

be crucial when monitoring indicates unusual patterns or structural shifts in the data. However, this 

study also has several limitations: it relies on a univariate series from a single country at a monthly 

frequency, it evaluates only two train–test splits, and it excludes external drivers as well as rolling-

origin or block cross-validation methods. Future research could expand by testing a wider range of split 

ratios, adopting rolling or blocked validation techniques, incorporating exogenous factors and regime-

shift diagnostics, and exploring decision-oriented loss functions and prediction intervals. Extending the 

analysis to multivariate, deep learning, or hybrid models (such as ARIMAX, VAR, LSTM, or ANFIS), 

as well as applying forecast combinations and testing other commodities or frequencies, would help 

assess the generalizability and robustness of these findings. 
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