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Abstract. Accurate forecasting of agricultural exports is crucial for supporting trade policy and
ensuring economic stability in Indonesia. This study investigates the impact of training—testing
proportions on the forecasting accuracy of six models: linear regression, decision tree, optimized
decision tree, neural network, Auto Regressive Integrated Moving Average (ARIMA), and
exponential smoothing. Using Indonesia’s agricultural export data, model performance was
evaluated under two data-splitting schemes (80%:20% and 75%:25%) with error metrics
including MAE, MSE, RMSE, and MAPE. The results consistently show that statistical time
series models outperform regression-based and machine learning approaches. In particular, SES
achieved the lowest forecasting errors across all evaluation criteria, with MAPE values as low
as 0.93%, followed by ARIMA as the second-best performer. Machine learning models, on the
other hand, produced relatively higher error values, suggesting their limited ability to capture
temporal dependencies in the data. Importantly, the choice of training—testing proportion did not
significantly alter the ranking of model performance, indicating that model selection plays a
more critical role than data partitioning. Overall, this study highlights the robustness of
exponential smoothing methods as reliable forecasting tools for Indonesia’s agricultural exports
and provides evidence-based insights for policymakers in designing effective trade strategies.

Keyword: ARIMA, agricultural exports, exponential smoothing, forecasting model, machine
learning.

1. Introduction

In the early 1980s and early 1990s, Indonesia was one of the most productive agricultural nations. Since
its population's demands are being exceeded by the amount of production, it is exporting this production
[1]. Being an agricultural nation, Indonesia has the capacity to control the global trade market in terms
of the volume of agriculture products [2]. Agriculture is a major source of income for many Indonesians,
particularly those who reside in rural areas, and it plays a significant role in the daily life of several
Indonesians [3]. Furthermore, Indonesia’s agricultural exports are an important aspect of growth, rural
income, and foreign exchange, but monthly export values are influenced to global rate movement [4],
[5]. Agricultural products in Indonesia that are highly competitive and of high quality will be able to
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penetrate export markets in ASEAN countries, which will in turn boost domestic production, increase
farmers' incomes, create job opportunities for young people, and generate foreign exchange for the
country. In addition, an issue affecting Indonesia’s agriculture industry is the aging of its farmers, which
is linked to their inability to absorb new breakthroughs or technologies [6]. Forecast accuracy is a vital
role for public authorities and agribusinesses, which apply predictions to allocate resources wisely and
minimize climate-related risks. Hence, strengthening accuracy and communication of forecasts is key
to support agricultural decision-making [7], [8].

The process of making the most accurate predictions about the future is called forecasting [9]. The
main goal of a forecasting approach is to create a mathematical model that forecasts future production
by utilizing a number of criteria [10]. According to trading value and policymakers, risk management,
and price speculation in particular, in commodities trading should be more precisely quantified,
computed, predicted, and analyzed [11]. Forecasting the agriculture export value is intriguing and
difficult because it resembles a time-series data set with a complex and dynamic stability level. Having
correct information on the agricultural situation is highly crucial. Making informed decisions in today's
market is made possible by the ability to forecast agricultural product trends [12]. Since it helps to lower
future uncertainty, forecasting future events is crucial in many fields to aid in decision-making [13]. In
this study, forecasting is not only concerned with decreasing errors after the fact, but also with
guaranteeing reliability before decisions are proposed. Fragile back-testing may cause agencies to issue
allows at the wrong time or allocate buffers not appropriately, which could intensify volatility instead
of stabilizing it [14], [15], [16], [17]. Consequently, this research extends beyond point accuracy to
evaluating how resilient model performance remains under varying validation scenarios.

An often neglected but vital address of reliability is the dividing of historical data for validation.
Different train—test ratio reshape the learning and testing horizons that bigger train proportion can
decrease variance yet miss recent shifts, whereas smaller test proportion horizons test stability but risk
under-fitting [18], [19], [20]. This impacts both accuracy measures and model rankings sensitive to the
partition ratio [21]. For policymakers, such sensitivity indicates fragile reliability and heightens decision
risks in monitoring and timing. To the best of our knowledge, this is the first study that analyze training-
testing proportion in the forecasting agriculture export model. There is currently no agreement based
on theoretical and numerical research regarding the ideal data splitting ratio [22]. A popular method in
machine learning and predictive modeling is to divide a dataset into two separate halves, usually called
the training and testing datasets [23]. There are several studies that concern in different splitting dataset
75%:25% training and testing [24], 50% testing data set [25], and based on asymptotic analysis, testing
ratio ought to approach 100% when the volume of data increases significantly [26]. In addition,
numerical research has suggested that a testing set of about 30% is a sensible option [27]. Therefore,
specifically, this study evaluates how 75%:25% and 80%:20% chronological partition affect the
forecasting model accuracy and whether model rankings remain stable across these validation choices.

This study addresses this gap by benchmarking six widely used approaches on Indonesia’s
agricultural export series under two schemes splitting data set, 80%:20% and 75%:25% with some
techniques Simple Linear Regression, Decision Tree, Neural Network, Auto Regressive Integrated
Moving Average (ARIMA), and Simple Exponential Smoothing (SES). The paper is organized as
follows. Section 2 presents a brief discussion of research method which consist of data used, methods
used, and performance evaluation criteria. Section 3 presents result and discussion which is the
forecasting results of five. And accuracies of all models are also discussed. Section 4 contains
conclusions and recommendations for the future research.
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2. Research Method

2.1. Data used

The study looks at monthly data on agriculture exports from Indonesia between January 2012 and May
2025. Overall, as Figure 1 illustrates, the time series of Indonesia’s agricultural exports shows an overall
upward trend with noticeable seasonal and cyclical fluctuations, reflecting recurring peaks and troughs
over time. In the later periods, exports display higher volatility and sharp growth, indicating both
increasing variability and significant expansion in the sector. Moreover, in this research, it has been
evaluated models under two chronological train-test partitions that are widely used in practice:
80%0:20% and 75%0:25%, respectively[22], [24], [28]. The proportion is determined to investigate the
impact of different data grouping and to balance estimation sufficiency and evaluation robustness on
our 161-month series. The data partitioning is as a method for internal validation, where the model is
validated on the same dataset it was developed on [29]. In addition, Figure 2 presents two different
approaches to splitting the agricultural export time series into training and testing sets. In panel (a), 80%
of the data (January 2012-September 2022) is used to train the forecasting models, while the remaining
20% (October 2022—-May 2025) is reserved for testing. In panel (b), the split is adjusted to 75% training
(January 2012-January 2022) and 25% testing (February 2022—May 2025), allowing comparison of
how training-testing proportions influence forecasting accuracy.
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Figure 1. Time series plot of Indonesia’s agriculture export.
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Figure 2. Training and testing dataset partition schemes for Indonesia’s agricultural export
forecasting (a) 80%:20%, (b) 75%:25%.
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2.2. Method used
Simple Linear Regression (SLR)

By interpreting the explanatory factors in a linear function, linear regression aims to explain the
fluctuation of a dependent variable [30]. Moreover, in SLR, output variable defined as Y, is related
linearly with input variable defined as X, [31]. Equation (1) will be used to get the expected output Y
for a given input X, where m is the regression coefficient and c is the intercept of the regression line
[32].

Y=mX,+c (€Y)

Decision tree

By using particular criteria during the decision-making process, the decision tree, a supervised simple
classification tool can divide data records into predetermined groups [33]. It is a well-known tool that
is among the most effective with comparatively low interpretability learning curves. It is frequently
used in a variety of contexts, including image processing, machine learning, data mining, and pattern
recognition. Decision trees are a type of machine learning algorithm that classifies or predicts a few
small groups of people by charting many decision-making principles [34]. Figure 3 illustrates a decision
tree's fundamental structure.

Branch

Layer 1

Figure 3. Decision tree basic structure [34].

Neural network (NN)

A type of artificial intelligence known as neural networks (NN) mimics the organic makeup of the
human brain [35]. Applications for NN are not limited to a single field, rather, they are diverse which
can be used for a number of purposes [36]. Moreover, NN is a non-linear function that maps from a
measurable input set X to a measurable output set Y, fy, and is parameterized by model parameters 6,
or the network weights [37], [38] as represented in Equation (2).

fo:X =Y  fo(x)=y (2)

Simple exponential smoothing (SES)
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A time-series forecasting technique for univariate data without trend or seasonality is called simple
exponential smoothing, or SES. The smoothing factor or smoothing coefficient, alpha (a), is the only
parameter needed [39], [40]. The exponential decay of the influence of the observations at previous
time steps is controlled by this parameter. Typically, alpha is set to a humber between 0 and 1.
Furthermore, SES corresponds to Equation (4) written as

Ye=aye+ (1 —-a)y'ey 3)

when y; is denoted as the observation value, y'; is denoted as the fitted value of y,, a is denoted as the
weight place on the end observation (0 < a < 1).

Auto Regressive Integrated Moving Average (ARIMA)

One kind of statistical model for evaluating and predicting time-series data is an ARIMA model [39].
When the data is univariate, stationary, and free of anomalies, ARIMA can be applied. The difference
can be applied once or twice to eliminate non-stationarity cases [40]. Furthermore, ARIMA corresponds
to Equation (4) written as

Ve=Ct+ DY 1+ -+ Dpyip+Dp Eqt -+ By Egt+E; 4)

when the differenced series denoted by y/. Both lagged errors and values of y; are included in the
predictors. The following factors determine it:

p (lag order): the number of lag observations in the model
ii. d (degree of differencing): the number of times the raw observations are differentiable
iii. g (order of moving average): the size of the moving average window

2.3. Performance evaluation criteria

To assess the forecasting performance of each model, several error metrics were employed. These
metrics are widely used in time series forecasting to capture different aspects of model accuracy. The
following four criteria were adopted [41], [42], [43]:

1. Mean Absolute Error (MAE)
Without taking into account the direction of the errors, MAE calculates the average size of the
errors in a collection of forecasts. It is described in Equation (5) as follow:

MAE = —ZlX (5)

where Y; is the actual i value, and X;is the forecasted i value, and m is the number of
observatlons

2. Mean Squared Error (MSE)
MSE squares the difference between actual and predicted values to penalize greater errors more
severely. It is written in Equation (6) as follow:

1
MSE = E;(Xi —Y;)? (6)

3. Root Mean Squared Error (RMSE)
An interpretable metric in the same unit as the data is provided by RMSE, which is the square root
of MSE. It is described in Equation (7) as follow:
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4. Mean Absolute Percentage Error (MAPE)
Forecasting accuracy is expressed as a percentage using MAPE, making it simple to interpret across
datasets. It is written in Equation (8) as follow:

m
1 Xi—Y;
Y
m & Vi
=1

| ®)

3. Result and Discussion
It has been conducted five models to forecast Indonesia’s agricultural export which are linear regression,
decision tree, neural network, ARIMA and simple exponential smoothing. The observation values have
been divided into training and testing data set such that 80%:20% and 75%-25%, respectively.
According to Table 1, The regression model for 80% training data y = 109.545 + 0.526 x; +
0.284 x, — 0.154 x5 shows that x; and x, significantly and positively influence the dependent variable,
while x5 has a negative but insignificant effect. The model explains about 39% of the variance (R? =
0.3937) and is highly significant overall (p < 0.001). In another words, the regression model for 75%
train-data y = 126.91038 + 0.48458 x; + 0.29048 x, — 0.18553 x3 suggests that x; and x, have
significant positive effects on the dependent variable, whereas x5 contributes negatively but without
statistical significance. With an R? = 0.368 and an overall p-value of 2.402 x 10~11, the model
explains about 37% of the variance and is statistically significant as a whole.

The decision tree for 80% training data shows that x; is the most influential predictor, with further
splits refined by x, and x3. The terminal nodes represent forecasted agricultural export values for
different data segments, capturing nonlinear relationships among the variables. While the decision tree
model for 75% training data starts with x; as the root split, followed by x, and x; as secondary
predictors. The structure shows how combinations of these variables define different paths, leading to
terminal nodes that represent predicted agricultural export values for specific conditions. Moreover, NN
model in this approach has structure with three input variables, one hidden layer containing seven
neurons for 80% training data while five neurons for 75% training data, and a single output neuron. The
model utilizes weighted connections and biases to capture nonlinear relationships between predictors
and agricultural export values.

In this study, ARIMA model proposed with first differencing. It means that parameter d equals 1.
The ARIMA residuals histogram for both training-testing data proportions indicate that the residuals
are close to a normal distribution because the majority of forecast errors are centered around zero and
essentially follow a bell-shaped curve. Given that errors appear random rather than systematic, this
suggests that the ARIMA model has done a respectable job of capturing the underlying structure of the
data. In addition, exponential smoothing model for both training-testing data proportions decompose
the dataset into some components. This makes its model particularly effective for time series with non-
linear trends and multiple seasonal cycles.

Table 1. Model construction under two training—testing proportions.

Construction

Model 80%:20% 75%:20%

Linear v = 109.545 + 0.526 x, + 0.284 x, y = 126.91038 + 0.48458 x,
regressi —0.154 x4 + 0.29048 x,
on — 0.18553 x4
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The forecasting plots in Figure 4 reveal notable differences in predictive performance among
the models. Linear regression (a) and decision tree (b) tend to underestimate fluctuations, producing
smoother predictions compared to the actual values. The neural network (c) shows improved
adaptability to changing trends but still exhibits slight deviations in peak values. ARIMA (d)
demonstrates strong alignment with the actual series, effectively capturing short-term variations, while
simple exponential smoothing (e) provides stable predictions but fails to adequately follow rapid
changes. Although actual values span the full time step in Figure 4(e), in the simple exponential
smoothing plot they are obscured because the red forecast line overlaps the blue actual line beyond step
15, owing to plotting order and high similarity. Overall, ARIMA and neural network models exhibit the
closest fit to the actual export data, indicating their suitability for capturing both trend and variability
in Indonesia’s agricultural export series.
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Figure 4. Forecasting performance on Indonesia’s agricultural export data using the 80%:20%
training—testing split: (a) simple linear regression, (b) decision tree, (c) neural network, (d) ARIMA,
and (e) simple exponential smoothing.

Figure 5 compares the forecasting performance of five models against the actual agricultural export
data. The simple linear regression (a), decision tree (b), and neural network (c) show noticeable
deviations between actual and predicted values, particularly in capturing sharp fluctuations. ARIMA
(d) demonstrates improved alignment, but still underestimates peak values. In contrast, simple
exponential smoothing (e) exhibits the closest match to the actual series, effectively following both the
overall trend and short-term variations, consistent with its superior error metrics reported in Table 1.
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Figure 5. Forecasting performance on Indonesia’s agricultural export data using the 75%:25%
training—testing split: (a) simple linear regression, (b) decision tree, (c) neural network, (d) ARIMA,
and (e) simple exponential smoothing.

Table 2 presents the forecasting performance of six different models—Ilinear regression, decision
tree, optimized decision tree, neural network, ARIMA, and simple exponential smoothing (SES)under
two training-testing proportions (80%:20% and 75%:25%). Across both settings, the statistical time
series models (ARIMA and SES) consistently outperform machine learning and regression-based
approaches, highlighting their ability to effectively capture the temporal dependencies in agricultural
export data. Specifically, SES achieves the lowest errors in all evaluation metrics, with MAE of 4.7699
and 3.8349, and MAPE of 1.2148% and 0.9322% for the 80%:20% and 75%:25% splits, respectively.
These results demonstrate that SES is highly reliable and well-suited for forecasting data with relatively
stable structures. ARIMA ranks as the second-best performer, also producing relatively low MAE and
RMSE values, although slightly higher than those of SES.

By contrast, machine learning models such as decision tree, optimized decision tree, and neural
network exhibit considerably higher error values across MAE, MSE, RMSE, and MAPE. This suggests
that these models may be less effective in modelling the time-dependent and auto correlated nature of
agricultural export data, which is better suited to statistical approaches. These findings align with prior
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studies [44] that emphasize the robustness of exponential smoothing methods in economic and
agricultural forecasting. Furthermore, although neural networks are capable of capturing nonlinearities,
their performance is often dependent on larger datasets and extensive parameter tuning (Zhang et al.,
2019), which may explain their lower accuracy in this case.

B
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Table 2. Forecasting performance of different models under two training—testing proportions.

MAE MSE RMSE MAPE

80%:20%

Linear regression 64.7610 6885.4812 82.9788 13.5192
Decision tree opt  92.8090 13404.4527 115.7776 19.1666
Neural network  57.8723  5465.6922  73.9303 12.1602
ARIMA 7.7257 261.8439 16.1816 1.7618
SES 4.7699 59.4099 7.7078  1.2148
75%:25%

Linear regression 66.0883  7134.5643 84.4664 14.2112
Decision tree opt  89.0647 12671.9374 112.5697 18.6898
Neural network  70.5273  8015.4186  89.5289 15.0187
ARIMA 7.8641 159.8300 12.6424  1.9706
SES 3.8349 17.3444 41647 0.9322
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Figure 6. Comparison of forecasting performance across different models under two training—testing
(a) MAE, (b) MSE, (c) RMSE, and (d) MAPE.

The results in Figure 6 further reinforce these observations by illustrating that SES consistently
produces the lowest error metrics across both training—testing proportions, confirming its robustness.
ARIMA also demonstrates strong performance, albeit slightly inferior to SES, while regression-based
and machine learning models fall behind. Across both splitting schemes (75%:25% and 80%:20%), the
relative ordering of models remains stable: SES obtains the lowest MAE/RMSE/MAPE, ARIMA is the
second rank, and machine-learning/regression baselines trail behind. Absolute error levels change only
marginally between the two proportions, indicating that the ratio selection within this range has a
negligible effect on out-of-sample performance. Importantly, the choice of training—testing proportion
(80%:20% vs. 75%:25%) appears to have only a minor influence on forecasting accuracy, as the ranking
of models remains unchanged. This indicates that model selection has a far greater impact on forecasting
performance than the specific partitioning of training and testing data. From a practical standpoint, this
robustness underscores the reliability of SES and ARIMA as benchmark models for forecasting
Indonesia’s agricultural export trends. Taken together, these findings highlight that exponential
smoothing methods not only deliver the most accurate forecasts but also maintain stable performance
under different data-splitting schemes. This consistency is particularly valuable for policymakers and
practitioners, as it ensures that forecasting outcomes remain dependable despite variations in data
availability. While more complex machine learning approaches may be useful in other contexts, the
results suggest that statistical models remain superior for forecasting agricultural export data with strong
temporal patterns.

The results highlight that exponential smoothing methods provide the most accurate and reliable
forecasts for Indonesia’s agricultural export series. This finding is consistent with earlier studies that
emphasize the robustness of exponential smoothing in modeling economic and trade-related time series
[9]. Previous works have also shown that exponential smoothing can outperform more complex
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approaches such as ARIMA and neural networks, particularly in datasets with trend and seasonal
structures [45], [46]. Another important finding is that varying the training-testing proportion
(75%:25% vs. 80%:20%) does not significantly affect the ranking of forecasting performance. This
result supports previous evidence that exponential smoothing yields stable and consistent accuracy
across different data partitions, making it highly reliable for practical forecasting applications [47].
Taken together, these findings strengthen the position of exponential smoothing as a benchmark
forecasting method due to its stability, interpretability, and computational simplicity. While advanced
methods such as ARIMA, ANFIS, or neural networks may provide competitive results, exponential
smoothing offers a dependable balance between accuracy and practicality, making it suitable for guiding
trade-related decision-making in Indonesia.

4, Conclusion

This study shows that, for Indonesia’s monthly agricultural exports, changing the train—test split
between 75%:25% and 80%:20% has little effect on forecasting accuracy and does not alter the ranking
of models. Simple Exponential Smoothing (SES) consistently provides the best results, followed by
ARIMA, while regression, decision tree, and neural network models perform less effectively. In
practice, this suggests that policymakers and agencies should focus more on selecting the robust model
which may apply SES or ARIMA as reliable baselines across multiple seasonal cycles treating the exact
proportion of training data within the 75-80% range as less critical. More complex techniques may only
be crucial when monitoring indicates unusual patterns or structural shifts in the data. However, this
study also has several limitations: it relies on a univariate series from a single country at a monthly
frequency, it evaluates only two train—test splits, and it excludes external drivers as well as rolling-
origin or block cross-validation methods. Future research could expand by testing a wider range of split
ratios, adopting rolling or blocked validation techniques, incorporating exogenous factors and regime-
shift diagnostics, and exploring decision-oriented loss functions and prediction intervals. Extending the
analysis to multivariate, deep learning, or hybrid models (such as ARIMAX, VAR, LSTM, or ANFIS),
as well as applying forecast combinations and testing other commodities or frequencies, would help
assess the generalizability and robustness of these findings.

Acknowledgement

The authors would like to express their sincere gratitude to the anonymous reviewers for their valuable
insights and constructive feedback, which have significantly improved the quality of this manuscript.
The authors are also grateful to all colleagues and institutions that supported this research directly or
indirectly.

References

[1] D. S. Dewanti and F. P. Purna, “Indonesia’s Agriculture Tax: An Approach to the GTAP Model,” J. Ekon. dan
Stud. Pembang., vol. 14, no. 1, 2022, doi: 10.17977/um002v14i12022p096.

[2] G. Widhiyoga, H. Wijayati, and R. Alma’unah, “Export Performance Of Indonesia’s Leading Tropical Fruit
Commodities To Main Destination Countries,” IQTISHADUNA J. lim. Ekon. Kita, vol. 12, no. 1, pp. 128-148, Jun.
2023, doi: 10.46367/igtishaduna.v12i1.1126.

[3] K. F. Arifah and J. Kim, “The Importance of Agricultural Export Performance on the Economic Growth of
Indonesia: The Impact of the COVID-19 Pandemic,” Sustain., vol. 14, no. 24, Dec. 2022, doi:
10.3390/su142416534.

[4] E. D. Satriana, Harianto, and D. S. Priyarsono, “Pengaruh volatilitas nilai tukar terhadap kinerja ekspor utama

pertanian indonesia,” vol. 13, no. 2, pp. 163-186, 2019, doi: 10.30908/BILP.V1312.424.
[5] U. Kalsum, N. Djamil, T. Nirmala, S. Wifasari, and I. G. P. R. Andaningsih, “The Effect of Global Commodity
Price Volatility on Indonesia’s Trade Balance,” Nomico., vol. 2, no. 7, pp. 1-7, 2025, doi: 10.62872/y3eepe50.
[6] R. R. Rachmawati and E. Gunawan, “Peranan Petani Milenial mendukung Ekspor Hasil Pertanian di Indonesia,”

2 ICDSOS
||1‘@ icosos




>

0!

[7]
(8]

(9]
[10]

[11]
[12]
[13]
[14]

[15]

[16]
[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]
[26]
[27]

[28]

[29]

[30]

[31]

[32]

N8 2

>
T W Septiarini et al |E®i

Forum Penelit. Agro Ekon., vol. 38, no. 1, 2020, doi: 10.21082/fae.v38n1.2020.67-87.

P. Calanca, “Weather Forecasting Applications in Agriculture,” 2014, pp. 437-449. doi: 10.1016/B978-0-444-
52512-3.00234-5.

D. Lemoine and S. Kapnick, “Financial markets value skillful forecasts of seasonal climate,” Nat. Commun., vol.
15, 2024, doi: 10.1038/s41467-024-48420-z.

R. J. Hyndman and Athanasopoulos, Forecasting: principles and practice. OTexts, 2018.

S. A. Haider et al., “LSTM neural network based forecasting model for wheat production in Pakistan,” Agronomy,
vol. 9, no. 2, Feb. 2019, doi: 10.3390/agronomy9020072.

R. R. Erlina and R. Azhar, “FORECASTING MODEL OF AGRICULTURE COMMODITY OF VALUE
EXPORT OF COFFEE : APPLICATION OF ARIMA MODEL,” vol. 9, no. 3, pp. 257-263, 2020.

P. Phakdi, “Forecasting Model for the Value of Areca Nut’s Export of Thailand,” Webology, vol. 18, no. Special
Issue, pp. 1241-1253, 2021, doi: 10.14704/WEB/V18S104/WEB18195.

L. lic, B. Gorgiilii, M. Cevik, and M. G. Baydogan, “Explainable boosted linear regression for time series
forecasting,” Pattern Recognit., vol. 120, Dec. 2021, doi: 10.1016/j.patcog.2021.108144.

T. Aditya, S. Jaipuria, and P. K. Dadabada, “Model selection for long-term load forecasting under uncertainty,” J.
Model. Manag., 2024, doi: 10.1108/jm2-09-2023-0211

L. Wang et al., “Robust Nonparametric Distribution Forecast with Backtest-Based Bootstrap and Adaptive Residual
Selection,” ICASSP 2022 - 2022 IEEE Int. Conf. Acoust. Speech Signal Process., pp. 3903-3907, 2022, doi:
10.1109/icassp43922.2022.9747701.

A. Stratigakos, P. Andrianesis, A. Michiorri, and G. Kariniotakis, “Towards Resilient Energy Forecasting: A
Robust Optimization Approach,” IEEE Trans. Smart Grid, p. 1, 2023, doi: 10.1109/tsg.2023.3272379.

M. Zanotti, “The effects of retraining on the stability of global models in retail demand forecasting,” 2025, doi:
10.48550/arxiv.2506.05776.

B. Jafrasteh, E. Adeli, K. M. Pohl, A. Kuceyeski, M. R. Sabuncu, and Q. Zhao, “Statistical variability in comparing
accuracy of neuroimaging based classification models via cross validation,” Dent. Sci. reports, vol. 15, no. 1, 2025,
doi: 10.1038/s41598-025-12026-2.

G. Gallitto et al., “External validation of machine learning models—registered models and adaptive sample
splitting,” Gigascience, vol. 14, 2025, doi: 10.1093/gigascience/giaf036.

H. R. Maier et al., “On how data are partitioned in model development and evaluation: Confronting the elephant in
the room to enhance model generalization,” Environ. Model. Softw., vol. 167, p. 105779, 2023, doi:
10.1016/j.envsoft.2023.105779.

C.J. Brown, C. A. Buelow, R. D. Stuart-Smith, N. S. Barrett, G. J. Edgar, and E. Oh, “Assessing predictive
accuracy of species abundance models in dynamic systems,” Methods Ecol. Evol., 2025, doi: 10.1111/2041-
210x.70105.

V. R. Joseph, “Optimal ratio for data splitting,” Stat. Anal. Data Min., vol. 15, no. 4, pp. 531-538, Aug. 2022, doi:
10.1002/sam.11583.

C. Vilette, T. Bonnell, P. Henzi, and L. Barrett, “Comparing dominance hierarchy methods using a data-splitting
approach with real-world data,” Behav. Ecol., vol. 31, no. 6, pp. 1379-1390, Nov. 2021, doi:
10.1093/beheco/araa095.

M. M. Oghaz, M. A. Maarof, M. F. Rohani, A. Zainal, and S. Z. Mohd Shaid, “A hybrid color space for skin
recognition for real-time applications,” J. Comput. Theor. Nanosci., vol. 14, no. 4, 2017, doi:
10.1166/jctn.2017.6516.

G. Afendras and M. Markatou, “Optimality of training/test size and resampling effectiveness in cross-validation,” J.
Stat. Plan. Inference, vol. 199, pp. 286-301, Mar. 2019, doi: 10.1016/j.jspi.2018.07.005.

A. Dubbs, “Test Set Sizing via Random Matrix Theory,” Oper. Res. Forum, vol. 5, no. 1, Mar. 2024, doi:
10.1007/s43069-024-00292-1.

Q. H. Nguyen et al., “Influence of data splitting on performance of machine learning models in prediction of shear
strength of soil,” Math. Probl. Eng., vol. 2021, 2021, doi: 10.1155/2021/4832864.

T. W. Septiarini, M. R. Taufik, and T. A. E. Prasetya, “A comparative forecasting model of COVID-19 case in
Indonesia,” in Journal of Physics: Conference Series, IOP Publishing Ltd, Jun. 2021. doi: 10.1088/1742-
6596/1918/4/042020.

B. Van Calster, E. W. Steyerberg, L. Wynants, and M. van Smeden, “There is no such thing as a validated
prediction model,” BMC Med., vol. 21, no. 1, 2023, doi: 10.1186/s12916-023-02779-w.

M. Flores-Sosa, E. Leon-Castro, E. Aviles-Ochoa, and J. M. Merigo, “FORECASTING VOLATILITY WITH
SIMPLE LINEAR REGRESSION AND ORDERED WEIGHTED AVERAGE OPERATORS,” Econ. Comput.
Econ. Cybern. Stud. Res., vol. 56, no. 3, 2022, doi: 10.24818/18423264/56.3.22.13.

V. Veeramsetty, A. Mohnot, G. Singal, and S. R. Salkuti, “Short term active power load prediction on A 33/11 kV
substation using regression models,” Energies, vol. 14, no. 11, Jun. 2021, doi: 10.3390/en14112981.

H. S. Al-Zboon and M. 1. Y. Alharayzeh, “The Impact of Guessing on the Accuracy of Estimating Simple Linear

ICDSOS

The 3" Inter
an D

Mo

onal Conference
v Official Statistics
25




»

0!

[33]
[34]
[35]
[36]
[37]
[38]

[39]

(40]

(41]

[42]

(43]

[44]
[45]
[46]

[47]

N8 2

>
T W Septiarini et al |E®i

Regression Equation Parameters and the Ability to Predict,” Int. J. Instr., vol. 16, no. 2, pp. 927-944, Apr. 2023,
doi: 10.29333/ii.2023.16249a.

C.S. Lee, P. Y. S. Cheang, and M. Moslehpour, “Predictive Analytics in Business Analytics: Decision Tree,” Adv.
Decis. Sci., vol. 26, no. 1, pp. 1-29, Mar. 2022, doi: 10.47654/V26Y202211P1-30.

M. Do, W. Byun, D. K. Shin, and H. Jin, “Factors influencing matching of ride-hailing service using machine
learning method,” Sustain., vol. 11, no. 20, Oct. 2019, doi: 10.3390/su11205615

T. T. K. Tran, S. M. Bateni, S. J. Ki, and H. Vosoughifar, “A review of neural networks for air temperature
forecasting,” May 01, 2021, MDPI AG. doi: 10.3390/w13091294.

M. Madhiarasan and M. Louzazni, “Analysis of Artificial Neural Network: Architecture, Types, and Forecasting
Applications,” J. Electr. Comput. Eng., vol. 2022, 2022, doi: 10.1155/2022/5416722.

J. Gawlikowski et al., “A survey of uncertainty in deep neural networks,” Artif. Intell. Rev., vol. 56, 2023, doi:
10.1007/510462-023-10562-9.

A. Almosova and N. Andresen, “Nonlinear inflation forecasting with recurrent neural networks,” J. Forecast., vol.
42, no. 2, 2023, doi: 10.1002/for.2901.

A. Bhattacharjee, G. K. Vishwakarma, N. Gajare, and N. Singh, “Time Series Analysis Using Different Forecast
Methods and Case Fatality Rate for Covid-19 Pandemic,” Reg. Sci. Policy Pract., vol. 15, no. 3, pp. 506-519, Apr.
2023, doi: 10.1111/rsp3.12555.

T. W. Septiarini, M. R. Taufik, M. Afif, and A. Rukminastiti Masyrifah, “A comparative study for Bitcoin
cryptocurrency forecasting in period 2017-2019,” in Journal of Physics: Conference Series, Institute of Physics
Publishing, Jun. 2020. doi: 10.1088/1742-6596/1511/1/012056.

D. Chicco, M. J. Warrens, and G. Jurman, “The coefficient of determination R-squared is more informative than
SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation,” PeerJ Comput. Sci., vol. 7, 2021, doi:
10.7717/PEERJ-CS.623.

D. Munandar, B. N. Ruchjana, and A. S. Abdullah, “Principal component analysis-vector autoregressive integrated
(PCA-VARI) model using data mining approach to climate data in the West Java Region,” BAREKENG J. limu
Mat. Dan Terap., vol. 16, no. 1, pp. 99-112, 2022.

R. Apriliyanti, N. Satyahadewi, and W. Andani, “Application of Extreme Learning Machine Method on Stock
Closing Price Forecasting Pt Aneka Tambang (Persero) Tbk,” BAREKENG J. lImu Mat. dan Terap., vol. 17, no. 2,
pp. 1057-1068, 2023.

R. Hyndman, A. Koehler, K. Ord, and R. Snyder, Forecasting with exponential smoothing: the state space
approach. Springer, 2008.

G. Zhang, B. Eddy Patuwo, and M. Y. Hu, “Forecasting with artificial neural networks: The state of the art,” Int. J.
Forecast., vol. 14, no. 1, 1998, doi: 10.1016/S0169-2070(97)00044-7.

M. R. Abonazel and A. I. Abd-Elftah, “Forecasting Egyptian GDP using ARIMA models,” Reports Econ. Financ.,
vol. 5, no. 1, pp. 3547, 2019.

A. A. Adebiyi, A. O. Adewumi, and C. K. Ayo, “Comparison of ARIMA and artificial neural networks models for
stock price prediction,” J. Appl. Math., vol. 2014, no. 1, p. 614342, 2014.

ICDSOS

The 3" Inter
an D

Mo

onal Conference
v Official Statistics
25




<> 0




	The Impact of Training-Testing Proportion on Forecasting Accuracy: A Case of Agricultural Export in Indonesia

