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Abstract. Accurate food price forecasting is essential for maintaining market stability and food
security. East Java Province was selected as the study area because it is one of Indonesia’s main
food production centers and a major contributor to national inflation. This study compares three
deep learning architectures LSTM, Bi-LSTM, and hybrid CNN-LSTM to forecast the prices of
four key food commodities (red chili, shallots, medium-grade rice, and beef) in East Java.
Hyperparameter tuning was performed using grid search, and performance was evaluated using
MAPE, MAE, and RMSE. The results show that the Bi-LSTM model consistently provides the
best performance compared to LSTM and CNN-LSTM across the four analyzed commaodities.
Based on MAPE, MAE, and RMSE values, Bi-LSTM achieved the lowest forecasting errors for
all commodities. The MAPE values of Bi-LSTM were 1.73% for red chili, 0.60% for shallots,
0.23% for medium-grade rice, and 0.08% for beef, all of which were lower than those of LSTM
and CNN-LSTM models. These findings highlight Bi-LSTM’s bidirectional architecture, which
leverages contextual information from both past and future data sequences, making it the most
robust and effective model for forecasting food prices under varying volatility. The study
provides practical insights for policymakers and supply chain stakeholders in supporting price
stability and food security.
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1. Introduction

Food price stability is a fundamental pillar in maintaining Indonesia's food security and economic
stability. Fluctuations in the prices of basic commodities contribute significantly to inflation, which has
an impact on the decline in people's purchasing power, especially low-income households [1]. This
condition not only affects the economic sector but also has an impact on social welfare and public
perception of the reliability of daily necessities. Stabilizing food prices aligns with the Sustainable
Development Goals (SDGs), particularly SDG 2 (Zero Hunger) and SDG 8 (Decent Work and Economic
Growth), which focuses on sustainable and inclusive economic growth.

East Java Province occupies a strategic position as one of the national food barns. In 2024, rice
production in East Java reached 9.65 million tons of milled dry grain (GKG) or equivalent to 5.35
million tons of rice, making it a major contributor to the national food supply [2]. In addition to rice,
East Java is also a center for the production of important horticultural commodities, such as red chili
(562,000 tons) and shallots (484,000 tons). This province is also the main supplier of national animal
protein needs through meat and poultry commodities. With such a significant contribution, food price
fluctuations in East Java not only affect the local community but also have direct implications for
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national food stability. These four commodities are consistently recorded by the Central Statistics
Agency (BPS) and the Ministry of Agriculture as the main contributors to food inflation [3]. BPS data
(June 2025) recorded East Java's inflation at 0.43% (month-to-month), mainly triggered by increases in
the prices of red cachili, rice, shallots, and chicken eggs, which shows the crucial role of the food sector
in inflation [4].

The frequent fluctuations in food prices (high market volatility) make conventional modeling
approaches less effective for predicting price levels, as they often fail to capture nonlinear patterns in
time-series data [5]. Given these limitations, deep learning methods have emerged as effective
alternatives. Deep learning provides a way which is robust for interpreting and modeling time series
data, with better data complexity handling capabilities. One widely used architecture is Long Short-
Term Memory (LSTM), which was developed to overcome the vanishing gradient problem in Recurrent
Neural Network (RNN) and has proven effective in learning long-term dependencies. Previous studies,
particularly in forecasting highly volatile stock prices, have shown that conventional models such as
ARIMA tend to yield lower accuracy compared to deep learning models like LSTM when dealing with
nonlinear and unstable price dynamics [6]. However, standard LSTM only processes data sequentially
forward, so it does not utilize the context of future data. To address this limitation, Bidirectional LSTM
(Bi-LSTM) incorporates both forward and backward passes, enabling more comprehensive temporal
feature extraction. Similar findings have been reported in other domains, such as such as energy
consumption forecasting, Bi-LSTM outperforms LSTM and traditional models like ARIMA and
SARIMAX, confirming its superiority in modeling nonlinear time series data [7] . Recent developments
have also integrated Convolutional Neural Networks (CNN) with LSTM in a hybrid CNN-LSTM
architecture, where CNN extracts local patterns or important features from the data before it is further
processed sequentially by LSTM [8].

This study compares three deep learning architectures—LSTM, Bi-LSTM, and CNN-LSTM—to
predict prices of four major food commodities in East Java. The objective is to provide data-driven
insights that support policymakers in maintaining price stability and protecting consumers from harmful
fluctuations.

2. Research Method
2.1. Long Short-Term Memory (LSTM)
LSTM employs a special gate mechanism that controls access to information in memory cells, enabling

LSTM to handle and learn long-term historical data patterns [9]. The following figure 1 illustrates the
architecture of an LSTM, which consists of an input gate, an output gate, and a forget gate.
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Figure 1. LSTM architecture [10]
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The input gate (i;) determines the new information added to the cell state, and its new candidate
value is obtained through the tanh activation function(C,). These two components are then used to
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update the cell state (C,). The forget gate (f;) functions to decide which information from the previous
cell state (C,_4) should be retained or discarded through the sigmoid activation function. Finally, the
output gate (0,) determines which information is output from the cell state, where the final hidden state
value is obtained from the product of the output gate and the tanh activation of the cell state. Thus,
LSTM is able to retain long-term information while adding new patterns from sequential data.

2.2. Bidirectional Long Short-Term Memory (Bi-LSTM)

Bi-LSTM is a bidirectional combination of LSTM. Bi-LSTM processes data sequences forward (from
the beginning to the end of the sequence) and backward (from the end to the beginning of the sequence)
[11]. In this way, Bi-LSTM can utilize past and future information simultaneously, resulting in a richer
context representation. The Bi-LSTM structure consists of two LSTM layers running in parallel in
different directions, which are then combined in the output layer [12]. The following figure 2 illustrates
the structure of the Bi-LSTM layer. Both layers have the same output.
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Figure 2. Bi-LSTM architecture [10]

h_g = L(xtVVxﬁt + ht_]_WHH + bﬁ) (6)
ht = L(xthE + ht_lWHE + bﬁ) (7)

Essentially, Bi-LSTM uses the same principle as LSTM, namely three gates in measuring
information flow. The data processing involves current input (x;), hidden state from the previous time
(ht—1), activation function (£), weights (W) and bias (b). The difference lies in the direction of
propagation, where there are two processing paths. The forward hidden path (hT) utilizes information
from the previous hidden state to process the input at the current step. Conversely, the backward hidden
path ((h_t) processes the input by considering information from the hidden state at the next step. The

results of these two paths are then combined to produce the final output (y,) at each time step. Thus,
Bi-LSTM is able to capture both past and future contexts in a data sequence.

2.3. Convolutional Neural Network (CNN-LSTM)

CNN-LSTM is a hybrid architecture that combines the advantages of Convolutional Neural Network
(CNN) and Long Short-Term Memory (LSTM) [13]. CNN is used to extract local features from
sequential data, while LSTM utilizes these feature representations to learn long-term temporal
dependencies. With this combination, CNN-LSTM is effective in capturing complex patterns of both
short-term and long-term dependencies [14]. CNN works by using one-dimensional convolution (1D
convolution) to capture local patterns or short-term dependencies, such as trends or cycles in time series
data [15]. This combination makes CNN-LSTM effective in identifying complex patterns, both short-
term dependencies and long-term dependencies, so it is often used in prediction and anomaly detection
tasks on time series data. The following figure 3 shows the architecture of CNN-LSTM.
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Figure 3. CNN-LSTM architecture [16]

In general, the CNN-LSTM processing stages are CNN processing, where sequential data is fed
into the CNN to generate feature maps that extract local patterns from each time step. Next is sequence
processing, where the feature maps obtained are then fed into the LSTM, which learns temporal
dependencies and updates the hidden state at each time step to capture long-term dependencies. The
output from the LSTM is used to generate time series predictions.

2.4. Data

The primary focus of this study is on commodity prices, specifically the prices of red chili, shallots, and
beef in East Java Province, from 2014 to 2024, presented as daily time-series data. The data were
obtained from the Information System on Availability and Price Development of Basic Materials in East
Java (SISKAPERBAPO) website, through a scraping process [17]. The dataset is divided into training
data (80%) and testing data (20%). The training set is used to train the forecasting models and capture
temporal patterns, while the testing set is used to evaluate the models’ generalization ability and assess
predictive performance on previously unseen data. These commodities were selected based on data from
Statistics Indonesia (BPS) and the Ministry of Agriculture, which show that red chili, shallots, rice, and
beef are the main contributors to food inflation in East Java. Their strong price fluctuations make them
relevant for analyzing volatile food price patterns.

2.5.  Analysis Methodology
The analysis was conducted using LSTM, Bi-LSTM, and CNN-LSTM models separately but with the
same procedure:

1. Exploring the data to see an overview of the characteristics of each commodity price.

2. Performing data transformation using the min-max scaler method. This is done to equalize the
data scale in the range of 0 — 1 without changing the original data distribution.

3. Converting the data into three dimensions: number of samples (n), time step as the prediction time
window prediction, and the number of variables in each sample. Modeling with LSTM, Bi-LSTM,
and CNN-LSTM

a. Dividing the training data and test data
b. Initialize hyperparameters for each model as shown in table 1.
Table 1. LSTM-Based models parameters.

Hyperparameter Value
Number of layers 1
Number of neurons [32, 50, 100]
Batch size [16, 32]
Activation Function Tanh, ReLU
Learning rate [0.01, 0.001]
Epochs 100

c. Performing hyperparameter tuning to obtain the best hyperparameter combination.
Hyperparameter tuning is performed using grid search.

d. Calculating model evaluation for each hyperparameter combination and selecting the best
hyperparameter combination based on the RMSE loss function

e. Performing modeling using the best hyperparameters for each model.
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f.  Predicting each commodity price with each model, resultingin 4 x 3 = 12 models.
4. Denormalization to restore the previous values from the range 0— 1 to the values the actual range
5. Evaluate the performance of the three models using the MAPE, MAE, and RMSE metrics, with
the best model selected based on the smallest value.

Figure 4 below is a flowchart of the analysis.
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Figure 4. Research stage

3. Result and Discussion

3.1. Descriptive Analysis

Descriptive analysis was conducted to provide an overview of the patterns, trends, and variations in food
commodity prices in East Java. This analysis aimed to identify differences in the level of fluctuation
between commodities and assess price stability during the observation period.
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Figure 5. Daily price trends of (a) red chili, (b) medium rice, (c) shallot, and (d) beef in East
Java, 2014-2025.

Figure 5 shows the daily price trends for four food commodities in East Java for the period 2014—

2025. The price of red chili showed the sharpest fluctuations, with a peak price of 129,068 rupiah/kg on
February 26, 2017, and a low of 9,009 rupiah/kg on July 7, 2014. These fluctuations can occur because
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red chili is highly sensitive to climatic conditions and pest infestations, while its harvesting period is
relatively short. In addition, its perishable nature and short shelf life mean that even small changes in
supply can trigger drastic price spikes. Shallots also experienced significant fluctuations, marked by a
price spike of up to 65,994 rupiah/kg on July 13, 2022, and a minimum price of 11,889 rupiah/kg on
August 26, 2015. Meanwhile, beef prices are relatively stable with a slow upward trend, with the lowest
price of 91,464 rupiah/kg on January 3, 2014, reaching a peak of 125,228 rupiah/kg on May 6, 2022.
These differences become more evident when examined through the descriptive statistics presented in

table 2.
Table 2. Descriptive statistics of commodity prices
Commodities Mean std Min 25% 50% 75% Max
Red chili 37099.79 22011.51 9009  19611.2 31767.5  48055.5 129068
Shallot 26093.72  7985.63 11889 19853 25864 31041.25 65994
Medium rice 9591.73 1034.99 777 8862 9482.5 9784 12273
Beef 107978 6892.14 91464 105021 108478  114037.75 125228

Table 2 provides an important overview of the price movements of four commodities. The price of
red chili has an average of 37099.79 with a standard deviation of 22011.51 and a wide price range, from
9009 to 129068 rupiah/kg, which confirms high volatility. Shallots also exhibited considerable
fluctuations, with an average of 26,093.72 and a standard deviation of 7,985.63, as well as a fairly wide
price range between 11,889 and 65,994 rupiah/kg. In contrast, medium-grade rice was relatively stable,
with an average of 9591.73, a low standard deviation of 1034.99, and a narrow price range of 7777—
12273 rupiah/kg, indicating that price movements were relatively controlled. Beef was the most
consistent commodity, with the highest average price of 107,978 but a small standard deviation of
6,892.14 and a relatively narrow price range of 91,464-125,228 rupiah/kg.

Overall, both visual patterns and descriptive statistics show that red chili is the commodity with the
highest price volatility, followed by shallots. Conversely, medium-grade rice and beef are relatively
stable throughout the observation period.

3.2. Prediction Analysis of LSTM, Bi-LSTM, and CNN-LSTM

This study compares the performance of three deep learning architectures —namely, LSTM, Bi-LSTM,
and CNN-LSTM —in predicting the prices of strategic food commodities. The comparison was
conducted to identify the model that is most capable of capturing price movement patterns in both highly
volatile and relatively stable data.
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Figure 6. Comparison of the best LSTM, Bi-LSTM, and CNN-LSTM models for (a) red chili, (b)
shallot, (c) medium rice, and (d) beef.
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Figure 6 presents a comparison of price forecasts for red chili, shallots, medium-grade rice, and beef
using three deep learning architectures. In general, all three models are able to capture price movement
patterns effectively and accurately follow actual trends based on historical data. However, there are
variations in performance between models, especially for commodities with high price volatility.

Volatile commodities, such as red chili (Figure 6a) and shallots (Figure 6b), exhibit more pronounced
differences between models. The fluctuating price of red chili indicates that Bi-LSTM predictions are
smoother and closer to actual values than those of LSTM and CNN-LSTM. A similar pattern is also
observed in shallots, where Bi-LSTM produces a more consistent prediction line following the actual
data, while CNN-LSTM appears to have a greater deviation during periods of price spikes, indicating
its inability to capture these anomalies. The standard LSTM occupies a position between the two.

For more stable commodities, such as medium-grade rice (Figure 6¢) and beef (Figure 6d), all three
models show similar accuracy. However, Bi-LSTM remains superior with more precise predictions,
especially during the rise in rice prices at the end of 2024 and the surge in beef prices in mid-2023. In
contrast, CNN-LSTM for beef shows an underestimate bias, as its convolutional architecture tends to
filter sporadic price spikes as noise. In fact, these spikes are often triggered by non-cyclical external
factors, such as holidays, disease outbreaks, or import policies. As a result, CNN-LSTM only captures
stable underlying patterns and fails to represent price spikes. These findings confirm that hybrid
architectures are not always the best solution for all types of time series data.

In contrast, the advantage of Bi-LSTM comes from its bidirectional mechanism. This architecture
not only processes information from the past to the future (forward) but also from the future to the past
(backward). This dual perspective provides richer temporal context for each data point, enabling the
model to account for influences from both preceding and subsequent trends. This ability makes Bi-
LSTM particularly robust in capturing complex temporal dynamics, both subtle fluctuations and drastic
changes, resulting in more accurate representations than unidirectional models such as LSTM and hybrid
CNN-LSTM.

3.3.  Model Evaluation Comparison

The models were evaluated by comparing their performance in forecasting the prices of four food
commodities in East Java. The performance of each model was evaluated using three metrics: Mean
Absolute Percentage Error (MAPE), Mean Absolute Error (MAE), and Root Mean Squared Error
(RMSE). A summary of the evaluation results is shown in table 3.

Table 3. Prediction performance metrics of LSTM, Bi-LSTM, and CNN-LSTM for each commodity.

Metrics Evaluation Metrics Evaluation

Model M('(?/;F)’E MAE  RMSE Model M&F))E MAE  RMSE

LSTM 206 830.22 1189.22 _ LSTM 025 2884 3857

gﬁﬁi Bi-LSTM 173 72427 113320 M;?C'zm Bi-LSTM 023 2548  35.98
CNN-LSTM 369 1542.07 228553 CNN-LSTM 039 4460  60.88

LSTM 079 22646 321.95 LSTM 013 15359 207.52

Shallot Bi-LSTM 060 18462 296.47 Beef Bi-LSTM 008 8883  183.14
CNN-LSTM 1.09 339.39 521.07 CNN-LSTM 050 59151 736.13

The evaluation results in table 3 show that the Bi-LSTM model consistently outperforms the other
models for almost all commodities by generating the lowest MAPE, MAE, and RMSE values. The Bi-
LSTM’s bidirectional architecture enables it to capture both past and future price patterns, leading to
superior predictive accuracy. For instance, when predicting the highly volatile red chili prices, Bi-LSTM
achieved a MAPE of 1.73%, compared to the standard LSTM (2.06%) and CNN-LSTM (3.69%). For
shallots, Bi-LSTM again performed best, with the lowest MAPE of 0.60%.

For commodities with relatively stable price patterns, such as medium-grade rice and beef, all
models performed well, with MAPE values below 1%. Notably, Bi-LSTM again proved to be the most
accurate, achieving MAPE values of 0.23% for rice and 0.08% for beef, indicating its strength in
handling stable price data and capturing temporal dependencies. Meanwhile, the CNN-LSTM hybrid
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model demonstrated lower performance across all commaodities, recording the highest prediction error;
this was especially evident for red chili (MAPE: 3.69%), suggesting its limitations in modeling such
patterns.

These findings indicate that the bidirectional architecture of Bi-LSTM, which utilizes contextual
information from both directions (forward and backward) in data sequences, is more effective in
capturing complex temporal patterns in price data. This finding aligns with research conducted by [14],
which suggests that Bi-LSTM is superior to other time series methods in predicting fresh vegetable
sales. Even when integrated with price strategy and restocking optimization using Particle Swarm
Optimization (PSO), it is able to provide maximum profit. This effectiveness applies to both highly
volatile and stable commaodities. The results of this study extend the advantages of Bi-LSTM to food
price prediction, demonstrating its effectiveness on both highly volatile and stable data. Conversely, the
relatively weaker performance of CNN-LSTM demonstrates that hybrid architectures are not inherently
superior, and model selection should be adapted to the specific characteristics of the data.

3.4. Best Model Prediction Results

In this study, the Bi-LSTM hyperparameter tuning process was carried out using the grid search method
to identify the optimal configuration for forecasting the prices of cayenne pepper, shallots, rice, and
beef. The grid search process was conducted based on the hyperparameter combinations listed in table
1. The final results of this process are presented in table 2, which lists the optimal hyperparameter
combinations from the Bi-LSTM model for each commodity.

Table 4. The best hyperparameter combination of the BI-LSTM model

Commodities Number Number Batch Activation Learning
of layers  of neurons size Function rate
Red Chili 1 50 16 Tanh 0.01
Shallot 1 50 16 Tanh 0.01
Medium Rice 1 50 16 Relu 0.01
Beef 1 32 32 Relu 0.01

The tuning results show that the optimal configuration is relatively consistent across most
commodities, although there are certain variations. For cayenne pepper, shallots, and medium-grain rice,
the optimal combination consists of one layer with 50 neurons and a batch size of 16, using the Tanh
activation function for cayenne pepper and shallots, and the ReLU function for rice.

Meanwhile, beef uses a different setup: 32 neurons, a batch size of 32, and a ReLU activation
function. All commodities share the same learning rate of 0.01. These configuration differences
demonstrate that the data characteristics for each commodity, such as price volatility and stability,
influence the network architecture required for optimal model performance.
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Figure 7. Training loss curves of the Bi-LSTM for () red chili, (b)
shallot, (c) medium rice, and (d) beef prices.

Figure 7 shows the training loss curve of the Bi-LSTM model for the four food commaodities during
100 training epochs. For all commaodities, the training loss value decreased dramatically in the first ten
epochs before finally stabilizing at a very low value close to zero. This demonstrates the model's value
in efficiently capturing and learning price patterns in commodity data. Overall, these results confirm
that the selected hyperparameter configuration produces a model that converges quickly without any
indication of overfitting, highlighting Bi-LSTM's stability and effectiveness in modeling each
commodity's price patterns.

4. Conclusion

This study addresses the critical need for accurate food price forecasting by comparing deep
learning models. The results show that Bi-LSTM consistently achieved the best performance
with the lowest error across all four commodities. Bi-LSTM's advantage lies in its ability to
process temporal information from both past and future price points, enabling it to understand
price dynamics in a greater context and identify complex patterns in both volatile and stable
markets. This bidirectional approach enhances its accuracy over standard LSTM, which only
considers past values, and over CNN-LSTM, which focuses more on spatial feature extraction.
In contrast, CNN-LSTM showed suboptimal performance, particularly with a tendency to
underestimate spikes in beef prices. These findings emphasize that more complex architectures
do not always guarantee better results, and model selection should be adapted to the
characteristics of the time-series data. Practically, Bi-LSTM has the potential to serve as the
basis for early warning systems and decision support in maintaining price stability and food
security. In the future, further research should focus on integrating external variables, such as
macroeconomic and climate factors, to enhance the predictive capabilities of Bi-LSTM.

Acknowledgement
The authors gratefully acknowledge the financial support provided by the Indonesia
Endowment Fund for Education (LPDP), Ministry of Finance of the Republic of Indonesia.

References

[1] M. R. Widarso and S. Djamaluddin, “ANALISIS HARGA PANGAN POKOK TERHADAP KETAHANAN
PANGAN DI INDONESIA,” SEPA: Jurnal Sosial Ekonomi Pertanian dan Agribisnis, vol. 21, no. 2, p. 256, Oct. 2024,
doi: 10.20961/sepa.v21i2.83821.

[2] BPS Provinsi Jawa Timur, “ringkasan-eksekutif-luas-panen-dan-produksi-padi-di-jawa-timur-2024,” vol. 4, Jawa
Timur: BPS Provinsi Jawa Timur, 2025.

[3] Yeniartha, “Panen Raya Serentak, Jatim Siap Siaga Sebagai Lumbung Pangan Nasional,” Balai Besar Pelatihan
Pertanian. Accessed: Aug. 29, 2025. [Online]. Available:
https://bbppketindan.bppsdmp.pertanian.go.id/blog/post/panen-raya-serentak-jatim-siap-siaga-sebagai-lumbung-
pangan-nasional

[4] Badan Pusat Statistik Kabupaten Probolinggo, “Perkembangan Indeks Harga Konsumen Provinsi Jawa Timur
Desember 2024,” Badan Pusat Statistik, no. 32, 2025, [Online]. Auvailable:

1040
|® IcDS0s




N 4

.

.
2

https://probolinggokab.bps.go.id/id/pressrelease/2025/01/08/255/perkembangan-indeks-harga-konsumen-provinsi-
jawa-timur-desember-2024.html

[5] W. Pangesti, N. Syukri, K. A. Notodiputro, Y. Angraini, L. Nissa, and A. Mualifah, “Performance Evaluation of
ARIMA,” 2025.

[6] A. Tlla, E. Nensi, M. Al Maida, K. A. Notodiputro, Y. Angraini, and L. Nissa, “Performance Analysis of ARIMA,
LSTM, and Hybrid ARIMA-LSTM in Forecasting the Composite Stock Price Index,” vol. 10, no. 2, pp. 588—604, 2025.

[7] H. Alizadegan, B. Rashidi Malki, A. Radmehr, H. Karimi, and M. A. Ilani, “Comparative study of long short-term
memory (LSTM), bidirectional LSTM, and traditional machine learning approaches for energy consumption
prediction,” Energy Exploration and Exploitation, wvol. 43, no. 1, pp. 281-301, Jan. 2025, doi:
10.1177/01445987241269496.

[8] W. Bao, W. Su, X. Zhao, and J. Zhuang, “A study on short-term vegetable price prediction based on the CNN-LSTM-
Attention model,” Discover Food, vol. 5, no. 1, 2025, doi: 10.1007/s44187-025-00426-2.

[9] N. Bacanin et al., “Multivariate energy forecasting via metaheuristic tuned long-short term memory and gated recurrent
unit neural networks,” Inf Sci (N Y), vol. 642, Sep. 2023, doi: 10.1016/j.ins.2023.119122.

[10] B. Bohara, R. I. Fernandez, V. Gollapudi, and X. Li, “Short-Term Aggregated Residential Load Forecasting using
BIiLSTM and CNN-BIiLSTM,” in 2022 International Conference on Innovation and Intelligence for Informatics,
Computing, and Technologies, 3ICT 2022, Institute of Electrical and Electronics Engineers Inc., 2022, pp. 37-43. doi:
10.1109/31CT56508.2022.9990696.

[11] M. Schuster and K.K. Paliwal, “Bidirectional recurrent neural networks,” IEEE Transactions on Signal Processing,
vol. 45, no. 11, p. 26732681, 1997.

[12]  A. Zeroual, F. Harrou, A. Dairi, and Y. Sun, “Deep learning methods for forecasting COVID-19 time-Series data: A
Comparative study,” Chaos Solitons Fractals, vol. 140, Nov. 2020, doi: 10.1016/j.cha0s.2020.110121.

[13] W.Lu,J.Li, Y.Li, A. Sun, and J. Wang, “A CNN-LSTM-based model to forecast stock prices,” Complexity, vol. 2020,
2020, doi: 10.1155/2020/6622927.

[14] L. Zhen and A. Bérbulescu, “Comparative Analysis of Convolutional Neural Network-Long Short-Term Memory,
Sparrow Search Algorithm-Backpropagation Neural Network, and Particle Swarm Optimization-Extreme Learning
Machine Models for the Water Discharge of the Buziu River, Romania,” Water (Switzerland), vol. 16, no. 2, Jan. 2024,
doi: 10.3390/w16020289.

[15] P. Lara-Benitez, M. Carranza-Garcia, and J. C. Riquelme, “An Experimental Review on Deep Learning Architectures
for Time Series Forecasting,” Int J Neural Syst, vol. 31, no. 3, Mar. 2021, doi: 10.1142/S0129065721300011.

[16] R.Murugesan, E. Mishra, and A. H. Krishnan, “Deep Learning Based Models: Basic LSTM, Bi LSTM, Stacked LSTM,
CNN LSTM and Conv LSTM to Forecast Agricultural Commodities Prices,” Nov. 01, 2021. doi: 10.21203/rs.3.rs-
740568/v1.

[17] Disperindag Jatim, “Sistem Informasi Ketersediaan dan Perkembangan Harga Bahan Pokok di Jawa Timur,”
Siskaperbapo.

1041
|® ICDSOS



	Implementing LSTM-Based Deep Learning for Forecasting Food Commodity Prices with High Volatility: A Case Study in East Java Province

