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Abstract.  Using Extreme Value Theory with a peaks-over-threshold method, we modelled the 

top 2% of sports-injury losses from 200,000 simulated claims. A generalized Pareto fit via MLE 

yielded a positive shape (ξ = 0.783), indicating a fat tail where rare injuries dominate severity. 

Q–Q and P–P diagnostics show good agreement between model and data. The implied 100-year 

loss is round 3.31 billion (currency units), and TVaR confirms that conditional on approaching 

the tail, predicted losses increase quickly. These findings support need for capital buffer to 

mitigate costly injuries, severe-scenario stress testing, and pricing loadings that specifically 

consider for costly but rare injuries. 

Keyword: Extreme Value Theory, Generalized Pareto Distribution, Peaks Over Threshold,  

1. Introduction 

In professional and high-performance athletics, the risk of injury is an inherent and accepted part of 

training and competition. While sports medicine has made significant contribution in preventing and 

treating common injuries, a tough challenge remains in understanding and managing the risk of rare, 

severe events. These are injuries that are not only severe in their physical impact but also extreme in 

their financial consequences.  

Sports injury are chosen instead of other domains such as finance or environment due to the financial 

risks associated with professional and high-performance athletics. Because extreme cases may cause 

severe physical impact & consequences, it is important to allocate capital in order to fund such claims 

when they occur, consider extreme scenarios in premium pricing, and incorporate stress testing which 

consider such cases. Hence, it is important to model these events accurately in order to be able to plan 

and execute the appropriate course of actions effectively.  

Similar studies have used similar methodology. As an example, Adil & Huai (2023) used Extreme 

Value Theory using the block maxima method in order to model the highest possible earthquake 

magnitude in Makran subduction zone. Extreme parameters are fitted using the generalized extreme 

value distribution. The results showed that the maximum magnitude tend to increase in the next 100 

years and the shape parameter equals 0.29. Another example is research by Daniel & Maashele (2023) 

about using Extreme Value Theory to model Johannesburg Stock Exchange Financial Market Data. The 

goal is to compare the block maxima approach & peaks-over-threshold (POT) approach. POT approach 

return level estimates were higher than the block maxima’s return level approach. The study also showed 

that using blended generalized extreme value may be better for short-term forecasting. Unlike previous 

studies focused on finance and natural disasters, this paper focuses on modelling sports injuries. 
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 The fundamental problem with these extreme events is their low frequency. It is exceptionally 

difficult, if not impossible, to build a reliable risk model using only historical data, as a typical dataset 

may contain few, if any, of these extreme events. This data scarcity leaves insurers and risk managers 

in a unreliable position; traditional actuarial methods, which rely on historical averages and predictable 

deviations, are unfit to price such risks or to quantify the true magnitude of a potential worst-case 

scenario. Without a robust statistical framework, putting adequate financial reserves and fair premiums 

becomes a matter of educated guesswork, increasing the risk of under-reserving and potential 

insolvency. 

To address this critical gap, this research employs a powerful combination of stochastic simulation 

and Extreme Value Theory (EVT). By first simulating a large, simulated dataset that mathematically 

resembles the features of a heavy-tailed risk profile, we overcome the problems of limited historical 

data. Subsequently, we apply the Peaks-over-Threshold (POT) methodology, a foundation of EVT, to 

specifically model the tail of the loss distribution. 

2. Research Method 

This study employs a quantitative, model-based approach to analyze the financial impact of extreme 

athletic injuries. The methodology is structured in two primary stages: (1) Data Generation and 

Preparation, which creates a suitable dataset for analysis, and (2) Data Analysis, which applies a suite 

of techniques from Extreme Value Theory (EVT) to model risk and derive actionable insights. The entire 

process is implemented in Python, leveraging the scipy, pandas, and specialized pyextremes libraries. 

2.1. Data Collection 

A key challenge in modelling catastrophic risk is the limited amount of historical data for low-frequency, 

high-severity events. To overcome this limitation and to ensure a dataset with the theoretical properties 

for EVT, this research utilizes a stochastic simulation approach. Since the data is simulated, it does serve 

as a real-world data but acts as a method to prove that the idea is realistic.  

As shown in Table 1, the primary dataset was synthetically generated by drawing 200,000 

observations from a Pareto distribution using the scipy.stats.pareto module. The choice of the Pareto 

distribution is theoretically motivated; by the Pickands–Balkema–de Haan theorem, the distribution of 

exceedances over a sufficiently high threshold from a wide range of underlying distributions (including 

the Pareto) approximates to a Generalized Pareto Distribution (GPD). This makes a Pareto-generated 

dataset the ideal standard for validating an EVT model, as its tail behavior is known a priori. 

The distribution was parameterized as follows: 

• Shape (β): 1.2. A shape parameter less than 2 ensures a "heavy tail" with unlimited 

variance, accurately reflecting the nature of catastrophic losses where outlier events are 

possible and significant. 

• Location (loc): 1,000. Establishes a minimum loss value. 

• Scale (α): 50,000. Determines the spread and magnitude of the data to model realistic 

financial values. 

From the simulated dataset, a threshold-based selection procedure was applied to extract 

exceedances. Following the peaks-over-threshold (POT) approach, the 98th percentile was chosen as 

the cutoff. This threshold balances bias and variance in EVT analysis: a lower threshold may introduce 

bias by including too many non-extreme points, while a higher threshold may leave too few observations 

for reliable estimation. The threshold was 1.29 million and produced 2,454 extreme events, which were 

used as the main data for fitting the generalized Pareto distribution (GPD) as shown in table 1. This step 

models the process of filtering operational, insurance, or financial loss data where only the extreme 

events are used for risk calculation. 
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Table 1. Dataset summary and threshold selection 

Statistic Value 

Total Simulated Data 200,000 

Threshold (98th 

percentile) 

1.29 million 

Number of 

Exceedances 

2,454 

 

2.2. Data Analysis Techniques 

The analytical phase employed Extreme Value Theory (EVT), focusing on the GPD under the POT 

framework. The selected exceedances were modelled using the maximum likelihood estimation (MLE) 

method to estimate the shape parameter (ξ), which indicates tail heaviness, and the scale parameter (β), 

which shows the distribution of extreme values. A positive ξ, as found in this study, confirms the 

presence of fat tails and highlights the non-negligible probability of catastrophic outcomes. 

Model validation was carried out via diagnostic plots, including return value plots, probability 

density plots, Q-Q plots, and P-P plots. These visual diagnostic tools test whether the GPD adequately 

shows the observed tail data. In particular, the Q-Q and P-P plots assess alignment between observed 

and theoretical quantiles, while the return value plot provides practical benchmarks for return period 

estimates. 

Subsequently, return level estimation was done to measure expected losses for different return time 

horizons (e.g., 10-year, 50-year, 100-year events). Additional analyses included conditional exceedance 

probabilities, which evaluate escalation risk once a threshold is violated, and expected shortfall (TVaR), 

a more traditional tail risk measure that considers losses beyond the VaR cutoff. Finally, simulation of 

new scenarios from allowed stress testing and further model validation. To ensure that the research is 

accurate and reliable, robustness checks will be conducted. This includes different thresholds, namely 

90%, 95% and 99%, followed by using different number of observations, namely 50000, 100000, and 

200000 observations as well as using block maxima method instead.  

Robustness checks are done by estimating the severity of extreme injuries via two methods. The first 

method is by using Peaks-over-Threshold. First, choose a high threshold u with 90%, 95%,and 99% as 

the chosen quantiles. Then, decluster exceedances to avoid serial dependence via run-length windows, 

r = {12H, 24H, 48H} and keep the top of the cluster only. Next, estimate GPD parameters, (ξ, σ), on 

exceedances, Y = X-u > 0. The primary method of estimation is maximum likelihood estimator using 

SciPy library in Python but if tail sample is too thin then use Hill’s tail index and a log-log survival 

slope. Afterwards, estimate the exceedances rate, λ and compute the return level as follows: 

 

   RLt = u +
σ

ξ
{(Tλ)ξ-1}, ξ ≠  0; RLt ≈ u + σ log(Tλ), ξ ≈ 0   (1) 

 

For the block maxima method, aggregate maxima over fixed blocks (365D, 180D, 90D, 30D) then 

fit Generalized Extreme Value (GEV) distribution via pyextreme library in Python and read the return 

level, RLt, directly at T = 100 years. The explanation behind this methodology is POT uses more tail 

data but depends on threshold. Block maxima is independent of threshold but depends on block choice 

and can require lots of data. Before performing any comparison, it is crucial to ensure the tail is well-

poised via 2 visual diagnostics, i.e mean life residual plot & threshold stability plot. For mean life 

residual plot, mean excess, e(u) = E[X-u|X > U] is plotted against u. On the other hand, threshold 

stability plots visualizes ξ(u) and σ(u) traced across a grid of u then pick the lowest value u in which 

ξ, σ stabilize while maintaining an adequate amount of exceedances.  

To be able to compare the robustness of the 2 methods, RL100 is recomputed across 4 dimensions as 

follows: 
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• n ∈ {50000, 100000, 200000} 
• q ∈ {0.90, 0.95, 0.99} 
• r ∈ {12H, 24H, 48H} 
• Block Size ∈ {365D, 180D, 90D, 30D} 

For each method, the absolute relative gap is computed as follows & if the gaps persist at 15% at 

larger sample size then there is sensitivity for method choice: 

 

   Gap =
|RL100

BM -RL100
POT|

RL100
POT       (2) 

  

The limitations of using simulations in modelling real-world phenomenon is that the data may not be an 

exactly the same as the data in the real-world so the any analyses resulting from the data may not be 

accurate and reliable. This is because simulation uses assumptions which tend simplify reality so it may 

not fully reflect real-world phenomenon. Hence, the results may not be applicable if the assumptions do 

not approximate or reflect the real-world. Furthermore, the choice of distribution in the simulation used 

to generate synthetic data may yield different observations. Hence, the results and analyses might be 

different if a different distribution is used which makes it not robust and also again, this choice is based 

on assumptions hence may not fully reflect reality.  

3. Result and Discussion 

3.1. Threshold Selection and Extreme Value Extraction 

The first step of analysis involved identifying the appropriate threshold for extreme value modelling. 

By applying the peaks-over-threshold (POT) method, the 98th percentile was chosen as the cutoff point, 

converging to a value of approximately 1.29 million. This ensured that the dataset convered to only only 

the most severe losses while maintained enough sample size. From the original 200,000 simulated 

observations, 2,454 exceedances were identified. 

This result confirms the expected rarity of extreme losses under heavy-tailed distributions: less than 

2% of total observations were classified as “extreme.” The distribution of exceedances indicated strong 

right-skewness, suggesting that extreme value theory is an appropriate framework for deeper analysis. 

Importantly, the threshold chosen balances model bias and variance, ensuring stability of estimates while 

obtaining enough extreme observations for statistical modelling. 

3.2. Fitting the Generalized Pareto Distribution  

Once the exceedances were identified, they were modeled using the generalized Pareto distribution 

(GPD). The maximum likelihood estimation (MLE) produced two key parameter estimates: a shape 

parameter (ξ) of 0.783 and a scale parameter (β) of approximately 1.81 million as summarized in the 

Table 2. 

The positive value of ξ is a crucial finding. It indicates that the loss distribution is heavy-tailed, 

meaning the probability of observing very large events decreases slowly rather than sharply. In reality, 

this shows that very huge financial losses, although have very low frequency, cannot be ignored due to 

their disproportionately large financial impact. A light-tailed distribution (ξ ≤ 0) would underestimate 

such risks, leading to insufficient reserves. 

The fitted model was evaluated using log-likelihood (–39,734.8) and Akaike Information Criterion 

(AIC = 79,474), as shown in table 2. While absolute values of these statistics are less informative without 

comparison, they confirm that the GPD provides a stable and consistent result. More importantly, 

diagnostic validation demonstrates that the model aligns closely with observed extremes. 
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Table 2. Estimated parameters of the GPD model 

Parameter  Value 

Shape  0.783 

Scale  1.81 million 

Log-likelihood  –39,734.8 

AIC  79,474 

3.3. Model Validation via Diagnostic Visualizations 

A range of diagnostic tools were used to evaluate model fit. The return value plot showed a strong 

alignment between the fitted GPD and the observed data across most return periods, although the 

uncertainty interval widened significantly for longe periods of time. This widening reflects the difficulty 

of forecasting very rate events with limited data. 

The probability density plot proved the fat-tailed nature of the distribution, showing a rapid increase 

near the threshold and a long right tail. Both the Q-Q plot (R² = 0.989) and the P-P plot (R² = 1.0) 

demonstrated excellent fit, confirming that the GPD captured the quantile behaviour of observed 

extremes almost perfectly. Slight deviations appeared at the most extreme quantiles, but such deviations 

are due to the sample size. 

These diagnostic results assure that the GPD is an appropriate model for the dataset, supporting its 

use for tail risk estimation, as summarized in figure 1. 

 

 

 
 

Figure 1. Diagnostic plots 

 

3.4. Estimation of Return Level 

Return level estimation provides metrics for risk management. Results show that a 2-year event 

corresponds to a return level of approximately 154 million, a 10-year event to 545 million, and a 100-

year event to 3.31 billion. A 100-year return level of around 3.31 billion suggests that insurers trying to 

cover elite athletes may face extreme losses hence sufficient reserves, appropriate pricing methods and 

reinsurance strategies need to be adjusted to consider these risk factors. Confidence intervals widened 

at greater time horizons, indicating greater uncertainty. 
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This highlights an important problem in extreme value analysis: while short-term return levels can 

be estimated with accurately, long-term predictions (e.g., 100-year losses) have large confidence 

intervals. For actuaries, this highlights the importance of stress testing and simulation rather than relying 

only on point estimates. Nevertheless, the 100-year return level provides a benchmark for solvency 

planning, in accordance with regulatory requirements such as Solvency II and risk-based capital 

frameworks. Table 3 summarizes the return level estimates along with their respective confidence 

intervals.  

 

                Table 3.  Return Level  & Confidence Intervals 

Return 

Periods 

(years) 

 Return Level Estimates Lower Confidence Interval Upper 

Confidence 

Interval 

2  153963600 120082300 205568400 

5  316560100 232791600 456168600 

10  545418900 382297100 833148200 

25  1118682000 735405300 1846639000 

50  1925565000 1205363000 3371455000 

100  3313902000 1975116000 6155226000 

3.5. Conditional Exceedances Probabilities 

Conditional exceedance analysis adds practical insight into escalation risks. For example, given that a 

loss already exceeds 50 million, the probability of it exceeding 200 million is approximately 16.7%. 

This result is particularly important for layered insurance and reinsurance, where the concern is not just 

whether a threshold is breached but how much further losses may escalate. 

From a business perspective, this suggests that once moderate losses occur, there remains a 

significant chance of escalation to catastrophic levels. This reinforces the necessity of reinsurance 

programs and contingency planning to absorb unexpected shocks. Connecting to sports injury, if an elite 

athlete face moderate losses then there is a high chance that it may escalate to extreme levels. Hence, 

insurers need to prepare sufficient reserves, set appropriate premium pricing, and set reinsurance 

strategies so that extreme financial losses can be mitigated.   

3.6. Expected Shortfall (TVaR) 

Expected shortfall (TVaR) was analyzed as a complementary risk measure to value-at-risk (VaR). The 

TVaR curve revealed that expected losses increase sharply as the confidence level approaches 100% as 

shown in figure 2. At extreme quantiles, TVaR exceeded 1 billion, far surpassing the VaR values at 

corresponding confidence levels. 

This finding highlights the weaknesses of VaR as an individual risk measure. While VaR shows the 

threshold loss level at a given probability, it ignores the size of losses beyond that point. In contrast, 

TVaR accounts for these catastrophic outcomes, offering a more conservative and informative metric. 

This can more accurately model scenarios in which an athlete faces extreme financial losses. For 

actuarial practice, this makes TVaR particularly useful for setting solvency capital requirements and 

pricing reinsurance. 

 



 

 
     
   697  
 

 

A F Juwono 

 
Figure 2. TVaR at various confidence levels 

 

3.7. Contribution to Expected Shortfall 

A decomposition of the 99% TVaR highlighted the concentration of risk in the largest events. Losses 

between 86 million and 240 million contributed less than 30% of the tail risk, while losses beyond 240 

million contributed over 60%. This finding shows that a small number of events rule the overall risk 

profile. The findings are summarized in table 4: 

                                                                            

Table 4.  Contribution to expected shortfall 

 Loss Intervals Contribution to Total Risk in Tail 

 [86307241, 106188613] 7.70% 

 [106188613, 141714367] 9.92% 

 [141714367, 240645918] 14.70% 

 [240645918, 10729359378] 60.77% 

   

 

This insight has direct implications for insurance and reinsurance design. It suggests that moderate 

risk layers contribute relatively little to overall tail risk, while catastrophic layers rule the exposure. As 

a result, reinsurance contracts and capital reserves should focus heavily on protecting against extreme 

levels of risk. Connecting to sport injury, catastrophic injuries may rule the amount of financial losses 

so appropriate actions should be taken to mitigate against these extreme losses.  

3.8. Statistical Moments of the Tail 

The tail distribution exhibited extreme skewness (84.07) and kurtosis (9,311). These values far exceed 

those of normal or even moderately skewed distributions, confirming that the dataset is ruled by rare, 

very large outliers. The high kurtosis in particular reflects the “fat-tailed” nature of the distribution, 

where the probability of extreme outcomes is significantly higher than under conventional models, as 

summarized in table 5. 

This result aligns with theoretical properties of heavy-tailed risk and confirms the application of 

extreme value theory. Ignoring such characteristics would lead to severe underestimation of capital & 

solvency requirements. Relating to sport injuries, there is a high chance that moderate losses will 

increase to extreme losses, proven by the high and positive skewness parameter (84.07) and the amount 

of extreme losses will be very high as shows by the very high kurtosis (9311.08). 
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Table 5.  Statistical moments of tail 

Parameter Value 

Skewness 84.07 

Kurtosis 9311.08 

3.9. Simulation of New Extreme Scenarios 

To test the predictive capacity of the fitted model, 50,000 new extreme loss scenarios were simulated 

from the GPD. The resulting distribution closely resembled the original exceedances, indicating that the 

GPD captures the underlying tail dynamics, as shown below in figure 3. These kinds of simulations are 

important for stress testing and risk scenario planning, as they provide insight into potential future 

catastrophic events. From an actuarial standpoint, this step provides practical methods for reserving, 

pricing, and loss quantification. 

 

 
Figure 3. Histogram/density plot of simulated vs observed exceedances 

3.10. Robustness Checks 

The diagnostics support a GPD tail for severe sports‐injury costs. The mean residual life curve is 

approximately linear across the full threshold grid, and the threshold-stability across full threshold grid, 

and the threshold-stability plot shows ξ stabilizing around 0.80 with a smooth σ once the threshold 

approaches the 1000000 up until 2000000 range; in this the number of exceedances is around 2830 up 

to 3091. The threshold is set at u ≈ 1.0 × 106 and the declustering window is 24 hours.  
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Figure 4. Threshold stability plot 

 
Figure 5. Mean residual life plot 

 

 

Under the specification, the POT fit is heavy-tailed in which q = 0.98, ξ̂ = 0.8254 and σ̂ =

1.659 × 106, and the rate of declustered exceedance is λ̂ = 111.24 per year. Here return levels rise 

rapidly with horizon (). Using q = 0.95 as benchmark or comparison, ξ̂ = 0.7668 and σ̂ =

1.576 × 106, and the rate of declustered exceedance is λ̂ = 133.99 per year yielded RL100 =
3000000000 showing stability and validating that there is a fat-tail in severity which means very costly 

but rare injuries dominate expected extreme loss. The σ̂, which is the GPD scale parameter at the chosen 

threshold tend to be very large. Because GPD is a right-skewed distribution, a very high scale parameter 

shows a very spread out and fat-tailed distribution, confirming the fact that rare losses tend to have 

extreme financial consequences.  

Method sensitivity exists when POT is compared with Block Maxima. The figure below shows that 

RL100 for POT (q = 0.95, r = 24h) is 3000000000 and 6700000000 for Block Maxima with annual 

blocks (365 D) which have a gap of around 78%. This difference is expected because Block Maxima 

depends on very few blocks, which inflates extrapolation uncertainty. robustness table confirms that 

365D blocks sometimes yield pathological RL100 with small block counts, whereas semi-annual, 

quarterly, and monthly blocks are far more stable, giving RL100 ≈ 200000000 up to RL100 ≈
750000000 across sample sizes. Conversely, once 𝑢 is in the stability band, POT remains coherent 

across thresholds and declustering windows: ξ stays in the 0.73–0.84 range and RL100 sits in a tight 

2700000000 up to  4750000000 as the threshold and declustering run length changes. Changes in the 

declustering run length influences the estimated exceedance rate, λ.  
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Figure 6. Return level for 100 years (peaks over threshold and block maxima) 

Therefore report POT as the primary specification—anchored at 𝑢 ≈ 1.0 ×  106, r ≈ 24H —with 

RLs at conventional horizons and a succinct sensitivity table over q and r, and we retain BM as a cross-

check using 180D and 90D blocks rather than 365D when the historical span yields few annual maxima. 

The practical implication for sport-injury finance is clear: the tail is heavy (ξ≈0.8), return levels escalate 

quickly with a multi-billion RL100, and pricing strategies, capital allocation, and reinsurance should 

accommodate to extreme financial losses. Block maxima with a window of 90D-180D provides a safe 

benchmark & POT becomes the main estimate.  

Compared to other distributions, GPD is suitable for peaks-over-threshold because it is the theoretical 

cap for exceedances with a high threshold – using the Pickands–Balkema–de Haan theorem any parent 

distribution with a high threshold approximates to GPD. It is data-efficient because it utilizes all 

exceedances above the threshold compared to block maxima. Furthermore, parameters are interpretable 

and portable too. Other alternatives include block maxima and generalized extreme value distribution 

and they  can require lots of data and sensitive to choice of block level, in which few blocks can lead to 

unstable very long return levels.  

  

4. Conclusion 

This study shows that Extreme Value Theory (EVT) effectively models the heavy-tailed nature of 

extreme losses. The positive shape parameter showed signs of fat tails, while diagnostic tests validated 

the model’s strong fit. Key findings include sharply increasing return levels, high conditional 

exceedance probabilities, and tail value-at-risk (TVaR) ruled by a small number of extreme events. 

These results highlight the importance of accounting for rare but severe losses in capital planning, 

solvency requirements, and pricing. The limitations of this study include using simulated may not fully 

reflect the real-world and it may be hard to generalize the results of this study due to limited amount of 

concrete data so there is not enough real evidence to create broader statements. The novelty of this paper 

is the extension of application to sports injury other than finance or natural disasters. Overall, EVT 

provides a rigorous framework for quantifying and managing extreme risk, which is robust against low-

frequency, high-impact events. Future recommendations include comparing the block maxima method 

and peaks-over-threshold method in the context of sports injury, using Bayesian methods and comparing 

these methods to EVT, and using machine learning methods to model extreme financial losses in the 

context of sport injuries.   
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