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Abstract. Using Extreme Value Theory with a peaks-over-threshold method, we modelled the
top 2% of sports-injury losses from 200,000 simulated claims. A generalized Pareto fit via MLE
yielded a positive shape (§ = 0.783), indicating a fat tail where rare injuries dominate severity.
Q-Q and PP diagnostics show good agreement between model and data. The implied 100-year
loss is round 3.31 billion (currency units), and TVaR confirms that conditional on approaching
the tail, predicted losses increase quickly. These findings support need for capital buffer to
mitigate costly injuries, severe-scenario stress testing, and pricing loadings that specifically
consider for costly but rare injuries.
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1. Introduction

In professional and high-performance athletics, the risk of injury is an inherent and accepted part of
training and competition. While sports medicine has made significant contribution in preventing and
treating common injuries, a tough challenge remains in understanding and managing the risk of rare,
severe events. These are injuries that are not only severe in their physical impact but also extreme in
their financial consequences.

Sports injury are chosen instead of other domains such as finance or environment due to the financial
risks associated with professional and high-performance athletics. Because extreme cases may cause
severe physical impact & consequences, it is important to allocate capital in order to fund such claims
when they occur, consider extreme scenarios in premium pricing, and incorporate stress testing which
consider such cases. Hence, it is important to model these events accurately in order to be able to plan
and execute the appropriate course of actions effectively.

Similar studies have used similar methodology. As an example, Adil & Huai (2023) used Extreme
Value Theory using the block maxima method in order to model the highest possible earthquake
magnitude in Makran subduction zone. Extreme parameters are fitted using the generalized extreme
value distribution. The results showed that the maximum magnitude tend to increase in the next 100
years and the shape parameter equals 0.29. Another example is research by Daniel & Maashele (2023)
about using Extreme Value Theory to model Johannesburg Stock Exchange Financial Market Data. The
goal is to compare the block maxima approach & peaks-over-threshold (POT) approach. POT approach
return level estimates were higher than the block maxima’s return level approach. The study also showed
that using blended generalized extreme value may be better for short-term forecasting. Unlike previous
studies focused on finance and natural disasters, this paper focuses on modelling sports injuries.
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The fundamental problem with these extreme events is their low frequency. It is exceptionally
difficult, if not impossible, to build a reliable risk model using only historical data, as a typical dataset
may contain few, if any, of these extreme events. This data scarcity leaves insurers and risk managers
in a unreliable position; traditional actuarial methods, which rely on historical averages and predictable
deviations, are unfit to price such risks or to quantify the true magnitude of a potential worst-case
scenario. Without a robust statistical framework, putting adequate financial reserves and fair premiums
becomes a matter of educated guesswork, increasing the risk of under-reserving and potential
insolvency.

To address this critical gap, this research employs a powerful combination of stochastic simulation
and Extreme Value Theory (EVT). By first simulating a large, simulated dataset that mathematically
resembles the features of a heavy-tailed risk profile, we overcome the problems of limited historical
data. Subsequently, we apply the Peaks-over-Threshold (POT) methodology, a foundation of EVT, to
specifically model the tail of the loss distribution.

2. Research Method

This study employs a quantitative, model-based approach to analyze the financial impact of extreme
athletic injuries. The methodology is structured in two primary stages: (1) Data Generation and
Preparation, which creates a suitable dataset for analysis, and (2) Data Analysis, which applies a suite
of techniques from Extreme Value Theory (EVT) to model risk and derive actionable insights. The entire
process is implemented in Python, leveraging the scipy, pandas, and specialized pyextremes libraries.

2.1. Data Collection

A key challenge in modelling catastrophic risk is the limited amount of historical data for low-frequency,
high-severity events. To overcome this limitation and to ensure a dataset with the theoretical properties
for EVT, this research utilizes a stochastic simulation approach. Since the data is simulated, it does serve
as a real-world data but acts as a method to prove that the idea is realistic.

As shown in Table 1, the primary dataset was synthetically generated by drawing 200,000
observations from a Pareto distribution using the scipy.stats.pareto module. The choice of the Pareto
distribution is theoretically motivated; by the Pickands—Balkema—de Haan theorem, the distribution of
exceedances over a sufficiently high threshold from a wide range of underlying distributions (including
the Pareto) approximates to a Generalized Pareto Distribution (GPD). This makes a Pareto-generated
dataset the ideal standard for validating an EVT model, as its tail behavior is known a priori.

The distribution was parameterized as follows:

e Shape (B): 1.2. A shape parameter less than 2 ensures a "heavy tail" with unlimited
variance, accurately reflecting the nature of catastrophic losses where outlier events are
possible and significant.

e Location (loc): 1,000. Establishes a minimum loss value.

e Scale (a): 50,000. Determines the spread and magnitude of the data to model realistic
financial values.

From the simulated dataset, a threshold-based selection procedure was applied to extract
exceedances. Following the peaks-over-threshold (POT) approach, the 98th percentile was chosen as
the cutoff. This threshold balances bias and variance in EVT analysis: a lower threshold may introduce
bias by including too many non-extreme points, while a higher threshold may leave too few observations
for reliable estimation. The threshold was 1.29 million and produced 2,454 extreme events, which were
used as the main data for fitting the generalized Pareto distribution (GPD) as shown in table 1. This step
models the process of filtering operational, insurance, or financial loss data where only the extreme
events are used for risk calculation.
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Table 1. Dataset summary and threshold selection

Statistic Value
Total Simulated Data 200,000
Threshold (98™ 1.29 million
percentile)
Number of 2,454
Exceedances

2.2. Data Analysis Techniques

The analytical phase employed Extreme Value Theory (EVT), focusing on the GPD under the POT
framework. The selected exceedances were modelled using the maximum likelihood estimation (MLE)
method to estimate the shape parameter (), which indicates tail heaviness, and the scale parameter (p),
which shows the distribution of extreme values. A positive &, as found in this study, confirms the
presence of fat tails and highlights the non-negligible probability of catastrophic outcomes.

Model validation was carried out via diagnostic plots, including return value plots, probability
density plots, Q-Q plots, and P-P plots. These visual diagnostic tools test whether the GPD adequately
shows the observed tail data. In particular, the Q-Q and P-P plots assess alignment between observed
and theoretical quantiles, while the return value plot provides practical benchmarks for return period
estimates.

Subsequently, return level estimation was done to measure expected losses for different return time
horizons (e.g., 10-year, 50-year, 100-year events). Additional analyses included conditional exceedance
probabilities, which evaluate escalation risk once a threshold is violated, and expected shortfall (TVaR),
a more traditional tail risk measure that considers losses beyond the VaR cutoff. Finally, simulation of
new scenarios from allowed stress testing and further model validation. To ensure that the research is
accurate and reliable, robustness checks will be conducted. This includes different thresholds, namely
90%, 95% and 99%, followed by using different number of observations, namely 50000, 100000, and
200000 observations as well as using block maxima method instead.

Robustness checks are done by estimating the severity of extreme injuries via two methods. The first
method is by using Peaks-over-Threshold. First, choose a high threshold u with 90%, 95%,and 99% as
the chosen quantiles. Then, decluster exceedances to avoid serial dependence via run-length windows,
r = {12H, 24H, 48H} and keep the top of the cluster only. Next, estimate GPD parameters, (§, o), on
exceedances, Y = X-u > 0. The primary method of estimation is maximum likelihood estimator using
SciPy library in Python but if tail sample is too thin then use Hill’s tail index and a log-log survival
slope. Afterwards, estimate the exceedances rate, A and compute the return level as follows:

RL, = u+ %{(TA)M},E # 0;RL¢ ~ u+ olog(TA),E~ 0 (1)

For the block maxima method, aggregate maxima over fixed blocks (365D, 180D, 90D, 30D) then
fit Generalized Extreme Value (GEV) distribution via pyextreme library in Python and read the return
level, RL;, directly at T = 100 years. The explanation behind this methodology is POT uses more tail
data but depends on threshold. Block maxima is independent of threshold but depends on block choice
and can require lots of data. Before performing any comparison, it is crucial to ensure the tail is well-
poised via 2 visual diagnostics, i.e mean life residual plot & threshold stability plot. For mean life
residual plot, mean excess, e(u) = E[X-u|X > U] is plotted against u. On the other hand, threshold
stability plots visualizes €(u) and o(u) traced across a grid of u then pick the lowest value u in which
¢, o stabilize while maintaining an adequate amount of exceedances.

To be able to compare the robustness of the 2 methods, RL, o is recomputed across 4 dimensions as
follows:
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n € {50000,100000,200000}
q € {0.90,0.95,0.99}
r € {12H, 24H, 48H}
Block Size € {365D, 180D,90D, 30D}

For each method, the absolute relative gap is computed as follows & if the gaps persist at 15% at
larger sample size then there is sensitivity for method choice:

RLBM_RLPOT
Gap = e @

100

The limitations of using simulations in modelling real-world phenomenon is that the data may not be an
exactly the same as the data in the real-world so the any analyses resulting from the data may not be
accurate and reliable. This is because simulation uses assumptions which tend simplify reality so it may
not fully reflect real-world phenomenon. Hence, the results may not be applicable if the assumptions do
not approximate or reflect the real-world. Furthermore, the choice of distribution in the simulation used
to generate synthetic data may yield different observations. Hence, the results and analyses might be
different if a different distribution is used which makes it not robust and also again, this choice is based
on assumptions hence may not fully reflect reality.

3. Result and Discussion

3.1.  Threshold Selection and Extreme Value Extraction

The first step of analysis involved identifying the appropriate threshold for extreme value modelling.
By applying the peaks-over-threshold (POT) method, the 98th percentile was chosen as the cutoff point,
converging to a value of approximately 1.29 million. This ensured that the dataset convered to only only
the most severe losses while maintained enough sample size. From the original 200,000 simulated
observations, 2,454 exceedances were identified.

This result confirms the expected rarity of extreme losses under heavy-tailed distributions: less than
2% of total observations were classified as “extreme.” The distribution of exceedances indicated strong
right-skewness, suggesting that extreme value theory is an appropriate framework for deeper analysis.
Importantly, the threshold chosen balances model bias and variance, ensuring stability of estimates while
obtaining enough extreme observations for statistical modelling.

3.2. Fitting the Generalized Pareto Distribution

Once the exceedances were identified, they were modeled using the generalized Pareto distribution
(GPD). The maximum likelihood estimation (MLE) produced two key parameter estimates: a shape
parameter (&) of 0.783 and a scale parameter () of approximately 1.81 million as summarized in the
Table 2.

The positive value of & is a crucial finding. It indicates that the loss distribution is heavy-tailed,
meaning the probability of observing very large events decreases slowly rather than sharply. In reality,
this shows that very huge financial losses, although have very low frequency, cannot be ignored due to
their disproportionately large financial impact. A light-tailed distribution (§ < 0) would underestimate
such risks, leading to insufficient reserves.

The fitted model was evaluated using log-likelihood (-39,734.8) and Akaike Information Criterion
(AIC =79,474), as shown in table 2. While absolute values of these statistics are less informative without
comparison, they confirm that the GPD provides a stable and consistent result. More importantly,
diagnostic validation demonstrates that the model aligns closely with observed extremes.
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Table 2. Estimated parameters of the GPD model

Parameter Value
Shape 0.783
Scale 1.81 million

Log-likelihood -39,734.8
AIC 79,474

3.3. Model Validation via Diagnostic Visualizations

A range of diagnostic tools were used to evaluate model fit. The return value plot showed a strong
alignment between the fitted GPD and the observed data across most return periods, although the
uncertainty interval widened significantly for longe periods of time. This widening reflects the difficulty
of forecasting very rate events with limited data.

The probability density plot proved the fat-tailed nature of the distribution, showing a rapid increase
near the threshold and a long right tail. Both the Q-Q plot (R2 = 0.989) and the P-P plot (R? = 1.0)
demonstrated excellent fit, confirming that the GPD captured the quantile behaviour of observed
extremes almost perfectly. Slight deviations appeared at the most extreme quantiles, but such deviations
are due to the sample size.

These diagnostic results assure that the GPD is an appropriate model for the dataset, supporting its
use for tail risk estimation, as summarized in figure 1.
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Figure 1. Diagnostic plots

3.4. Estimation of Return Level

Return level estimation provides metrics for risk management. Results show that a 2-year event
corresponds to a return level of approximately 154 million, a 10-year event to 545 million, and a 100-
year event to 3.31 billion. A 100-year return level of around 3.31 billion suggests that insurers trying to
cover elite athletes may face extreme losses hence sufficient reserves, appropriate pricing methods and
reinsurance strategies need to be adjusted to consider these risk factors. Confidence intervals widened
at greater time horizons, indicating greater uncertainty.
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This highlights an important problem in extreme value analysis: while short-term return levels can
be estimated with accurately, long-term predictions (e.g., 100-year losses) have large confidence
intervals. For actuaries, this highlights the importance of stress testing and simulation rather than relying
only on point estimates. Nevertheless, the 100-year return level provides a benchmark for solvency
planning, in accordance with regulatory requirements such as Solvency Il and risk-based capital
frameworks. Table 3 summarizes the return level estimates along with their respective confidence
intervals.

Table 3. Return Level & Confidence Intervals

Return Return Level Estimates Lower Confidence Interval Upper
Periods Confidence
(years) Interval
2 153963600 120082300 205568400
5 316560100 232791600 456168600
10 545418900 382297100 833148200
25 1118682000 735405300 1846639000
50 1925565000 1205363000 3371455000
100 3313902000 1975116000 6155226000

3.5. Conditional Exceedances Probabilities

Conditional exceedance analysis adds practical insight into escalation risks. For example, given that a
loss already exceeds 50 million, the probability of it exceeding 200 million is approximately 16.7%.
This result is particularly important for layered insurance and reinsurance, where the concern is not just
whether a threshold is breached but how much further losses may escalate.

From a business perspective, this suggests that once moderate losses occur, there remains a
significant chance of escalation to catastrophic levels. This reinforces the necessity of reinsurance
programs and contingency planning to absorb unexpected shocks. Connecting to sports injury, if an elite
athlete face moderate losses then there is a high chance that it may escalate to extreme levels. Hence,
insurers need to prepare sufficient reserves, set appropriate premium pricing, and set reinsurance
strategies so that extreme financial losses can be mitigated.

3.6. Expected Shortfall (TVaR)

Expected shortfall (TVaR) was analyzed as a complementary risk measure to value-at-risk (VaR). The
TVaR curve revealed that expected losses increase sharply as the confidence level approaches 100% as
shown in figure 2. At extreme quantiles, TVaR exceeded 1 billion, far surpassing the VaR values at
corresponding confidence levels.

This finding highlights the weaknesses of VVaR as an individual risk measure. While VVaR shows the
threshold loss level at a given probability, it ignores the size of losses beyond that point. In contrast,
TVaR accounts for these catastrophic outcomes, offering a more conservative and informative metric.
This can more accurately model scenarios in which an athlete faces extreme financial losses. For
actuarial practice, this makes TVaR particularly useful for setting solvency capital requirements and
pricing reinsurance.
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Expected Shortfall at Various Confidence Levels
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Figure 2. TVaR at various confidence levels

3.7. Contribution to Expected Shortfall

A decomposition of the 99% TVaR highlighted the concentration of risk in the largest events. Losses
between 86 million and 240 million contributed less than 30% of the tail risk, while losses beyond 240
million contributed over 60%. This finding shows that a small number of events rule the overall risk
profile. The findings are summarized in table 4:

Table 4. Contribution to expected shortfall

Loss Intervals Contribution to Total Risk in Tail
[86307241, 106188613] 7.70%

[106188613, 141714367] 9.92%

[141714367, 240645918] 14.70%

[240645918, 10729359378] 60.77%

This insight has direct implications for insurance and reinsurance design. It suggests that moderate
risk layers contribute relatively little to overall tail risk, while catastrophic layers rule the exposure. As
a result, reinsurance contracts and capital reserves should focus heavily on protecting against extreme
levels of risk. Connecting to sport injury, catastrophic injuries may rule the amount of financial losses
S0 appropriate actions should be taken to mitigate against these extreme losses.

3.8. Statistical Moments of the Tail

The tail distribution exhibited extreme skewness (84.07) and kurtosis (9,311). These values far exceed
those of normal or even moderately skewed distributions, confirming that the dataset is ruled by rare,
very large outliers. The high kurtosis in particular reflects the “fat-tailed” nature of the distribution,
where the probability of extreme outcomes is significantly higher than under conventional models, as
summarized in table 5.

This result aligns with theoretical properties of heavy-tailed risk and confirms the application of
extreme value theory. Ignoring such characteristics would lead to severe underestimation of capital &
solvency requirements. Relating to sport injuries, there is a high chance that moderate losses will
increase to extreme losses, proven by the high and positive skewness parameter (84.07) and the amount
of extreme losses will be very high as shows by the very high kurtosis (9311.08).
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Table 5. Statistical moments of tail

Parameter Value
Skewness 84.07
Kurtosis 9311.08

3.9.  Simulation of New Extreme Scenarios

To test the predictive capacity of the fitted model, 50,000 new extreme loss scenarios were simulated
from the GPD. The resulting distribution closely resembled the original exceedances, indicating that the
GPD captures the underlying tail dynamics, as shown below in figure 3. These kinds of simulations are
important for stress testing and risk scenario planning, as they provide insight into potential future
catastrophic events. From an actuarial standpoint, this step provides practical methods for reserving,
pricing, and loss quantification.
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Figure 3. Histogram/density plot of simulated vs observed exceedances

3.10. Robustness Checks

The diagnostics support a GPD tail for severe sports-injury costs. The mean residual life curve is
approximately linear across the full threshold grid, and the threshold-stability across full threshold grid,
and the threshold-stability plot shows & stabilizing around 0.80 with a smooth ¢ once the threshold
approaches the 1000000 up until 2000000 range; in this the number of exceedances is around 2830 up
to 3091. The threshold is set at u ~ 1.0 x 10° and the declustering window is 24 hours.
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Figure 4. Threshold stability plot
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Figure 5. Mean residual life plot

Under the specification, the POT fit is heavy-tailed in which q = 0.98, £ = 0.8254 and G =
1.659 x 10°, and the rate of declustered exceedance is A = 111.24 per year. Here return levels rise
rapidly with horizon (). Using q = 0.95 as benchmark or comparison, &= 0.7668 and 6 =
1.576 x 10°, and the rate of declustered exceedance is A = 133.99 per year yielded RL,q =
3000000000 showing stability and validating that there is a fat-tail in severity which means very costly
but rare injuries dominate expected extreme loss. The &, which is the GPD scale parameter at the chosen
threshold tend to be very large. Because GPD is a right-skewed distribution, a very high scale parameter
shows a very spread out and fat-tailed distribution, confirming the fact that rare losses tend to have
extreme financial consequences.

Method sensitivity exists when POT is compared with Block Maxima. The figure below shows that
RL;go for POT (q = 0.95,r = 24h) is 3000000000 and 6700000000 for Block Maxima with annual
blocks (365 D) which have a gap of around 78%. This difference is expected because Block Maxima
depends on very few blocks, which inflates extrapolation uncertainty. robustness table confirms that
365D blocks sometimes yield pathological RL,y, with small block counts, whereas semi-annual,
quarterly, and monthly blocks are far more stable, giving RL;qo = 200000000 up to RL;pg =
750000000 across sample sizes. Conversely, once u is in the stability band, POT remains coherent
across thresholds and declustering windows: & stays in the 0.73-0.84 range and RL;, Sits in a tight
2700000000 up to 4750000000 as the threshold and declustering run length changes. Changes in the
declustering run length influences the estimated exceedance rate, A.
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Figure 6. Return level for 100 years (peaks over threshold and block maxima)

Therefore report POT as the primary specification—anchored at u = 1.0 x 10, r ~ 24H —with
RLs at conventional horizons and a succinct sensitivity table over g and r, and we retain BM as a cross-
check using 180D and 90D blocks rather than 365D when the historical span yields few annual maxima.
The practical implication for sport-injury finance is clear: the tail is heavy (£~0.8), return levels escalate
quickly with a multi-billion RL; ¢, and pricing strategies, capital allocation, and reinsurance should
accommodate to extreme financial losses. Block maxima with a window of 90D-180D provides a safe
benchmark & POT becomes the main estimate.

Compared to other distributions, GPD is suitable for peaks-over-threshold because it is the theoretical
cap for exceedances with a high threshold — using the Pickands—Balkema—de Haan theorem any parent
distribution with a high threshold approximates to GPD. It is data-efficient because it utilizes all
exceedances above the threshold compared to block maxima. Furthermore, parameters are interpretable
and portable too. Other alternatives include block maxima and generalized extreme value distribution
and they can require lots of data and sensitive to choice of block level, in which few blocks can lead to
unstable very long return levels.

4. Conclusion

This study shows that Extreme Value Theory (EVT) effectively models the heavy-tailed nature of
extreme losses. The positive shape parameter showed signs of fat tails, while diagnostic tests validated
the model’s strong fit. Key findings include sharply increasing return levels, high conditional
exceedance probabilities, and tail value-at-risk (TVaR) ruled by a small number of extreme events.
These results highlight the importance of accounting for rare but severe losses in capital planning,
solvency requirements, and pricing. The limitations of this study include using simulated may not fully
reflect the real-world and it may be hard to generalize the results of this study due to limited amount of
concrete data so there is not enough real evidence to create broader statements. The novelty of this paper
is the extension of application to sports injury other than finance or natural disasters. Overall, EVT
provides a rigorous framework for quantifying and managing extreme risk, which is robust against low-
frequency, high-impact events. Future recommendations include comparing the block maxima method
and peaks-over-threshold method in the context of sports injury, using Bayesian methods and comparing
these methods to EVT, and using machine learning methods to model extreme financial losses in the
context of sport injuries.
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