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Abstract. Statistics Indonesia, which produces large-scale data, requires effective and optimal 

storage. Research related to Multi-Version Data Warehouse (MVDW), which utilizes 

document-based NoSQL itself, has attempted to be developed for the sake of BPS data storage 

and proposed an algorithm to store and search data. This paper is made to examine algorithm 

optimization methods to reduce the time used in the process of storing and searching data when 

needed. The algorithm proposed in this paper focuses on the data storage process by suggesting 

a storage model that generalizes the coding of variables in the data warehouse used so that later 

data searches can be carried out more easily and optimally. Other optimization methods are 

also carried out by applying query optimization methods to support and improve the 

optimization of the proposed algorithm. The results of the two optimization methods carried 

out can be said to be successful because the time used in the data search process by utilizing 

the algorithm after the application of the optimization method has been reduced when 

compared to the data search process using algorithms that have been developed by previous 

research. 

1. Introduction 

Statistics Indonesia (BPS) conducts surveys and censuses regularly intending to produce data and 

information that will later be published, both in the form of raw data and printed books. Before the 

data and information are processed, the data results and metadata from each survey and census from 

each period are stored in a data warehouse (DW). DW is a subject-oriented data repository that is 

integrated, non-volatile, and can support the collection of time-variant data that is used to make data 

storage more structured [1]. 

 Eric Brewer [2] developed a theory which states that indicators of distributed data storage so that it 

can be said to be structured are by paying attention to consistency, data availability (availability), and 

tolerance for network partitions (partition tolerance). This is then better known as the CAP theorem, 

which describes the priority that can be prioritized from a data storage system. In the next few years, 

Brewer conducted a further study of this theorem, which later became a reference for the creation of a 

NoSQL (Not Only SQL) non-relational database system for data storage [3]. 

 NoSQL itself has been used in various data storage implementations in recent years. This is 

because, in its use of large-scale data, the implementation of the NoSQL nonrelational database system 

is considered to have more advantages such as flexibility and ability to store and retrieve large 

volumes of data compared to relational databases [4]. 

 According to an interview with one of the developers of Portal Indonesia Data Hub (INDAH) [19], 

the use of non-relational databases at BPS is the use of Hadoop Distributed File Service (HDFS) [5] as 
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a data lake, while the use of DW in BPS data storage still uses Microsoft SQL Server [6] and IBM 

DB2 with BLU Acceleration [7] which is a relational database. Over time, the use of relational 

databases in activities being carried out by BPS to build the One Data Indonesia Portal will face 

challenges related to handling the ever-increasing volume of data. This is in line with the nature of 

relational databases which have better performance when handling small and limited data [8]. 

 As an effort to mitigate the challenges above, the use of a NoSQL database as an alternative to BPS 

data storage has begun to be developed. Apart from its flexibility and data management capabilities, 

this development is also carried out because data storage using a NoSQL database itself is not based 

on the form of the storage scheme, but is categorized based on the data structure [9]. Therefore, the 

NoSQL database that will be highlighted in this paper is a non-relational database with a document-

based data structure, considering that the data source that is more often generated from BPS surveys 

and censuses is in the form of JSON or XML [10]. 

 With the background of this research, Maghfiroh and Baskara [11] have studied the use of Multi-

Version Data Warehouse (MVDW) uses document-based NoSQL as an alternative in storing data 

from BPS survey results. The MVDW developed in this study uses the MongoDB application, which 

is considered to have advantages in reading, write, and delete operations when compared to other 

document-based non-relational databases. [12] 

 This study was then continued with the development of the MVDW model and a more 

sophisticated algorithm by Maghfiroh and Santoso [13] to be more dynamic, to provide convenience 

in overcoming challenges in the data storage and retrieval process when needed in the analysis 

process. However, considering that the time required to run the query is still slightly higher, 

researchers in [13] themselves still suggest designing a simpler algorithm so that it can run queries 

faster. 

 Previous research on optimization of non-relational NoSQL databases has been minimal compared 

to other forms of databases, and has mostly focused on workload sharing or focused on database 

performance such as the implementation of server replication by Tinetti et al. [14] and Gu et al. [15]. 

On the other hand, there are still few who target database efficiency from the system aspect, one of 

which is the implementation of query optimization by Mahajan et al. [16]. 

 Reference [16] itself mentions several methods that can be used to get a more optimal query, such 

as indexation, sorting, covering, aggregation, and sharding. The query optimization methods carried 

out in [16] also get quite large results, even hundreds of times more effective and faster than before the 

optimization. 

 Based on the brief description of the previous research above, this research will try to examine and 

apply optimization methods to the search process by dividing the research focus into two, namely in 

terms of the data collection algorithm and in terms of optimization of the query that will be used in the 

data collection process. With these proposed methods, we hope this research will get a faster data 

collection (store and search) process. 

2. Methods 

The initial stage of this research is to review the previous research that has been done to identify and 

review the problems that have not been resolved. The next stage is a literature study to find the 

previous reference and analyze the model that has been applied before, as well as defining the purpose 

of the research. After the literature study is carried out, the core of the research is carried out by 

conducting an experimental design, which consists of several stages, starting from empirical 

observation, theory building, empirical experimentation, and testing of the theory that has been built, 

which will be carried out circularly and repeatedly if needed [17]. The results obtained from this 

experimental design are then used as a reference in proposing a solution, which in this case is in the 

form of proposing a more optimal algorithm accompanied by other supporting optimization methods 

to achieve the goal.  

 Based on the initial study that the authors have done, supported by research results [11], [13] 

storing data from the BPS survey results has its challenges considering that the structure of the data 

obtained from each survey will change according to the needs of the survey objectives. This causes the 
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data storage in question will have different storage requirements, causing unavoidable structural 

differences in each survey. 

 One part of the data structure of the survey results that will experience differences from time to 

time is the coding of variables from each of these data. Changes in the coding of the variables 

themselves can be caused by various things such as additions, omissions, or specialization and 

generalization of variables in the previous survey, causing variables with certain coding to be shifted 

to another coding. For example, questions regarding the age of respondents in the 2015 SAKERNAS 

are stored in the B4_K5 variable, while in 2018 they are stored in the B4_K8 variable due to new 

questions in that year. 

 As the background of this research, the data search algorithm itself has been previously developed 

by [11] which can be seen in Figure 1. This algorithm will then be referred to as the basic search 

algorithm. In this algorithm, the data search process can be grouped into two major stages, namely the 

variable preparation stage (a) and the data search stage (b). At the variable preparation stage, a 

variable matching process is carried out that will be used in the input query with a list of coding 

columns in the variable metadata of each version considering the coding differences that can occur in 

each version. The list of columns obtained is then stored for later use in reordering the query so that it 

can be applied to all appropriate versions. 

 

 

Figure 1. Basic algorithm based on [11] 
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 Research on [11,13] using a basic query, without optimization. So in this research, we use query 

optimization methods, those are an indexed query and covered query [20]. 

2.1. Indexed Query 

An index is a special data structure that is used to store a small part of data collection so that a system 

can be easily navigated for the purpose of retrieval of data. Data indexation in MongoDB itself uses a 

B-Tree structure, which allows indexed data retrieval queries (indexed queries) to scan only the index 

that has been created without having to review the entire document, thereby easing the burden on the 

database and the applications that access it. 

2.2. Covered Query 

Query Covering is one of the optimization methods in MongoDB that utilizes the index from the 

database that has been provided. A query can be said to be covered by an index if: all fields used in the 

query are part of an index; all projected fields are part of the same index; and none of the fields in the 

query will be null. In processing, the covered query no longer needs to check any original documents 

in the database because the required fields are already stored in the existing index. 

 Experiments conducted in this research are the data collection algorithm modification, to be 

proposed algorithm, and also implement query optimization methods. We will compare these proposed 

methods to the previous algorithm on query running time and the number of queries executed to 

evaluate them. This research was conducted using the 2015 and 2018 National Labor Force Survey 

(SAKERNAS) data with selected areas of Lampung, DKI Jakarta, DI Yogyakarta, Bali, and South 

Sulawesi provinces. This research flow can be seen in Figure 2.  

 

 

Figure 2. Research Flow 

3. Result and Discussion 

R. Munir [18] emphasized that a good algorithm is an efficient algorithm, or in other words, 

minimizes the need for time and space. He adds that the time and space requirements of an algorithm 

depend on the size of the input, which is typically the amount of data processed. If it is linked to the 

algorithm in Figure 3, the input size in the form of steps performed at the variable (a) preparation 
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stage itself will increase, considering that there are queries that need to be rearranged for each version 

with the corresponding new column. 

 From the description above, the author considers that the algorithm can be made more effective if 

the variable preparation stage (a) can be omitted so that there are fewer steps that must be done, 

increasing the effectiveness of the algorithm. In its implementation, omitting this step will cause the 

query that was inputted at the beginning can be used for every query of the required version, and later 

the process of repeating the query compilation can be avoided. 

 As for this research, the authors use it as a means to propose a method to eliminate the variable 

preparation stage (a) in the algorithm that has been developed in [11]. However, the method proposed 

by the author places more emphasis on changing the structure of the survey data storage itself. The 

BPS survey data storage algorithm currently used to store data is still simple. First, the raw data from 

the BPS survey will be collected in a data lake, which in this case utilizes HDFS. This data lake is 

used by BPS as a temporary data storage place, considering that the stored data is still in the form of 

raw data, and cannot be directly used for data analysis needs. Therefore, the data will be explored and 

transformed first. After passing through the transformation and exploration stages, the data is stored in 

a data warehouse. In this storage, the data stored is structured, although in this case, the storage 

structure used is still in a relational form, considering that BPS still uses Microsoft SQL Server and 

DB2 BLU as a data warehouse for data storage. The algorithm, which will later be referred to as the 

basic storage algorithm, can be visualized in Figure 3. 

 

 

 

Figure 3. Basic algorithm 

to store data based on [19] 

 

 The changes to the storage structure proposed by the author are carried out before the data is stored 

in their respective data warehouses and applied to all versions of the existing survey results storage 

structure. Changes in the structure are carried out by classifying each variable containing the answers 

to the same questions in each version of the data into variables with the same coding for each data 

collection. Variables with the same coding will then be referred to as classification variables. For 

example, a question regarding the respondent's age would be coded as the AGE variable in each 

version. Because this classification process is carried out before the data is stored, this process only 

needs to be done once on all survey variables that contain answers to questions that have been asked. 

If in the future there are new variables containing answers to questions that have not been asked in the 

previous survey version, then the classification variable with the same name can be added directly to 

the data with a structure containing only these variables, without changing the data structure of the 

survey version previously. 

 The application of variable coding classification to this storage structure will later affect the data 

search process, where the variables that will be used in the inputted query will be directly used by all 

existing versions of the data. The data storage algorithm after the implementation of the variable 

classification process can be seen in Figure 4 and produces a snowballing effect on the data search 

algorithm which is shorter than the basic algorithm in Figure 5. 
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Figure 4. Proposed algorithm to store data. 

 

 

Figure 5. Proposed algorithm to search data. 

 

 In this case, the author tries to create a database in the form of a metadata collection that contains 

the mapping of each variable with the same data content from different years into a single document 

containing the name of the mapping variable, the description of the mapping variable, and its mapping 

to the actual data document based on each existing version. The collection containing the metadata 

will later be used as a bridge from the collection containing the actual data and information related to 

changes in the coding of variables in the data collection of each survey version. The metadata 

collection in question can be seen as an example of a snippet in Figure 6 and a collection containing 

actual data can be seen as an example of a snippet in Figure 7. 
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Figure 6. Metadata snippet 

used in the basic algorithm 

simulation. 

 

 

Figure 7. Actual data 

snippet used in the 

simulation of the basic 

algorithm. 

 

 Furthermore, to compare the basic algorithm and the proposed algorithm, the authors conducted a 

data filtering trial using the two algorithms. The filtering test is carried out by repeating 1,000 times, 

and then comparing the average and standard deviation of the time used, starting from the query input 

process containing the filters that will be used until the data is displayed. 

 Following the initial goal which intends to compare the two algorithms, which in this case are the 

basic algorithm and the proposed algorithm, the author uses two kinds of queries, the first is a query 

with column coding that is still not the same for each version and the second is a query with column 

coding which has been equalized. In this case, the two queries are queried on different databases due 

to different coding structures but have the same data. As the context for the explanation of the query 

that will be used, the database used by the author is named SAK2018 for 2018 Sakernas data with 

initial coding, SAK2015 for 2015 Sakernas data with initial encoding, and SAK2018_v2 and 

SAK2015_v2, respectively, for 2018 and 2015 Sakernas data, respectively. generalized coding. 

 In this case, a simple query is used to display the number of rows returned from the search results 

without displaying each row. The author will compare it with its SQL form to be able to easily 

describe what kind of query filtering is used. The following is the form of a query on a database with 

coding that has not been generalized if it is queried using SQL: 
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• SELECT COUNT(*) FROM SAK2018 WHERE (B4_K8>20 AND B4_K6=1 AND 

B5_R1A>7) 

• SELECT COUNT(*) FROM SAK2015 WHERE (B4_K5>20 AND B4_K4=1 AND 

B5_R1A>7) 

 The two queries above, if translated into everyday language, are to filter data from the survey 

results database with the criteria of being more than 20 years old, male, and having at least a high 

school education. The three criteria are equally applied to two different databases, namely SAK2018 

and SAK2015. Although the criteria are the same, the use of column names from the two databases is 

different. This aligns with coding that is still not generalized and requires the author to rematch the 

desired criteria with the list of columns that exist in each version. It can be said that the use of this 

query is a worthy example for simulating existing algorithms. 

 The following second form of query is executed on a database whose coding has been generalized, 

namely: 

• SELECT COUNT(*) FROM SAK2018_v2 WHERE (AGE>20 AND GENDER=1 AND 

EDUCATION_END>7) 

• SELECT COUNT(*) FROM SAK2015_v2 WHERE (AGE>20 AND GENDER=1 AND 

EDUCATION_END_END>7) 

 The two queries above have the same output function as the previous query. The difference only 

lies in the column names that are already evenly distributed in both databases that store the data to be 

retrieved. This causes the author does not to need to perform repeated matching for each database, and 

it can be said that it is feasible to simulate the proposed algorithm. 

 The graph in Figure 8 shows that the time used to display the results by the proposed algorithm has 

decreased compared to the basic algorithm. The average time used to run the basic algorithm is 816.43 

milliseconds, while the time used to run the proposed algorithm is an average of 543.99 milliseconds. 

 

 

Figure 8. Query Running Time Comparison based on search algorithm. 

 

 The process of searching and filtering data stored in a database can be further optimized by the 

query optimization method. As has been applied in [16], several query optimization methods can be 

applied in the data search process using MongoDB. Therefore, in the next step, the author tries to 

apply optimization steps to the search query used. The optimization method that has been applied by 

the author in this study is the method of query indexing and query covering. 

 The queries used in searching the data, either before or after the application of the query indexing 

and query covering methods are the same. The use of the index in a search query is used by defining 

the index to be used first, which in this study can be done by utilizing the native features of MongoDB 

itself. 
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 Like the definition of an index in general, this process is carried out before the query is executed. 

MongoDB itself has the cursor.explain and db.collection.explain() functions that can help define 

indexes. Both functions help by providing the best index plan for the query to be executed. For query 

covering itself, it is an advanced method of indexing, where all the keys used in the query must have 

their respective indexes. Query covering itself is intended so that the MongoDB application does not 

need to access the original data at all, and only accesses the index that has been defined. 

 To measure the optimization of the query used, the author compares the time and number of 

queries/second in the iteration process of data collection which is carried out 1000 times, then the 

average and standard deviation of the time used are taken. Regarding this, the result of each type of 

query is the printing of each row of search and filtering results. To describe the query used, here's what 

it looks like when translated in SQL: 

• SELECT (KAB_NAME, KAB_KODE, B4_K3, B4_K8, B5_R1A) FROM SAK2018 WHERE 

(B4_K8>20, B4_K6=1, B5_R1A>7) 

 It can be seen that the above query has differences from the queries in the previous experiment. 

This is because the desired output is all rows, although not all columns are printed to reduce the time 

and energy used in this experiment. The results of the comparison of the time used can be seen in 

Figure 9. 

 

 

Figure 9. Comparison of query running time based on query type. 

 

 In Figure 9, it can be seen that each method applied tends to reduce the time used to print query 

results. The basic query used at the beginning has an average printing time of 1,271.24 milliseconds. 

In queries, the application of the query indexing method has an average printing time of 1,217.82 

milliseconds, while the application of the query covering method on the basic query has an average 

printing time of 1,103.25 milliseconds. So far, the query covering method can be said to be more 

optimal than other types of queries. 

 Figure 9 also shows that the printing time at the beginning and end of the iteration tends to be 

higher, this happens because the power used on the MongoDB server-side has not been optimally 

deployed, and is in the process of deploying the server memory to perform query processing more per 

second. It can be seen from Figure 10 which shows the number of queries performed per second by 

each query, that the application of the query covering method tends to process more queries than the 

other two. This also causes the printing of the results of these queries to tend to be faster than others. 
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Figure 10. Comparison number of queries executed per second based on query type. 

 

 After knowing that the query covering method tends to support the optimization of the data search 

algorithm, the author performs a comparison again using a query to display the number of rows from 

the search results, and then juxtaposed with the results of a simple query using the proposed algorithm. 

The results of the comparison of the second stage can be seen in Figure 11, while the comparison of 

the mean and standard deviation of the time used by the three experiments to obtain the same results 

can be seen in Table 1. 

 

 

Figure 11. Comparison of query running time on the proposed 

algorithm based on query type. 

 

Table 1. Comparison of average and standard deviation query time. 

Query Type Average Deviation Standard 

Base Query on Basic Algorithm 816.43 4.71 

Base Query on Proposed Algorithm 543.99 3.31 

Covered Query on Proposed Algorithm 518.91 2.96 
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 Referring to Table 1, it can be seen that the application of the proposed algorithm reduces the 

average time used to obtain the same result by 34 percent, or in other words, causes an acceleration in 

the average time to reach 50 percent. The standard deviation of the time used also decreased by 1.75 or 

about 60 percent. Seeing the reduction of the two indicators, namely the average and standard 

deviation of the time used, it can be said that the research related to the application of algorithms and 

optimization can be said to be successful. 

4. Conclusions and Suggestions 

Some conclusions that can be obtained in this study are as follows: 

• The data search algorithm that has been developed in previous studies can still be optimized 

further in terms of the time required to run search queries. 

• The optimization of the algorithms carried out in this study focuses on the submission of new 

storage algorithms and optimization in terms of query usage. 

• The use of data search time using the algorithm proposed by the author in this study is less 

than the algorithm that has been developed by previous studies, where there is an average 

acceleration of 50 percent. 

• The query covering method applied as an advanced optimization process can be said to be 

effective in supporting the data search algorithm optimization process. 

• In general, research related to the optimization of this algorithm can be said to be successful 

because the time required, both in the process of storing and retrieving data, has been reduced. 

The suggestions from writing that can be done in the future to develop the results of this research are 

as follows: 

• Designing an effective variable classification algorithm and can be used as a reference in the 

data storage process. 

• Measure the time used in the variable classification process which is carried out in the explicit 

data storage process. 

• Conduct further research on the storage of structural differences due to specialization or 

generalization of variables. 

• Implement the use of non-relational databases as an alternative for storing data from BPS 

survey results in the future. 
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