Disaggregating the Hidden: Small Area Estimates of Child Labor in Bali Province
DOI:
https://doi.org/10.34123/icdsos.v2025i1.433Keywords:
Child labor, Hierarchical Bayes Beta, Small Area EstimationAbstract
Child labor remains a critical concern in Indonesia, including in Bali Province, which exhibits a higher prevalence than the national average. However, efforts to formulate effective local policies are often hindered by the unreliability of child labor statistics at the regency/municipality level, primarily due to high Relative Standard Error (RSE) values. This study seeks to estimate more reliable proportion of child labor at the regency level in Bali through the application of Small Area Estimation (SAE). The analysis utilizes data from the August 2024 Sakernas survey, supplemented with contextual variables from the 2024 PODES dataset. The SAE approach employed was the Hierarchical Bayes method with a Beta distribution (HB-Beta). The findings indicate that the HB-Beta model yields better accurate estimates, as evidenced by RSE values below 25% across all regencies. This demonstrates the potential of the HB-Beta model produces more accurate estimates than direct estimates, as it can better reflect differences between regency and help design more effective local policies to reduce child labor.